April  2013, 33(4): 1699-1712. doi: 10.3934/dcds.2013.33.1699

Well-posedness for a modified two-component Camassa-Holm system in critical spaces

1. 

Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou, China

Received  June 2011 Revised  September 2012 Published  October 2012

This paper is concerned with the problem of well-posedness for a modified two-component Camassa-Holm system in Besov spaces with the critical index $s=\frac 3 2$.
Citation: Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699
References:
[1]

R. Beals, D. Scattinger and J. Szmigielski, Acoustic scatting and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.   Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[6]

J.-Y. Chemin, "Perfect Incompressible Fluids,", in, (1998).   Google Scholar

[7]

G. M. Coclite, H. Holden and K. H. Karlsen., Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2006), 1044.  doi: 10.1137/040616711.  Google Scholar

[8]

A. Constantin, The Hamiltonian structure of the Camassa-Holm equation,, Exposition. Math., 15 (1997), 53.   Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[10]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[11]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[12]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 1992 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[13]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303.   Google Scholar

[14]

A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[15]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[16]

A. Constantin and J. Escher, On the blow-up rate and the blow-up of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75.  doi: 10.1007/PL00004793.  Google Scholar

[17]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[18]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[19]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.  doi: 10.1007/s002200050801.  Google Scholar

[20]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.  Google Scholar

[21]

H. Dai, Model equations for nolinear dispersive waves in compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193.  doi: 10.1007/BF01170373.  Google Scholar

[22]

R. Dachin, A few remarks on the Camassa-Holm equation,, Differential Integral Equations, 14 (2001), 953.   Google Scholar

[23]

R. Dachin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[24]

R. Dachin, "Fourier Analysis Methods for PDEs,", Lecture Notes, (2003).   Google Scholar

[25]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integral shallow water equation with linear and nonlinear dispersion,, Phys. Rev. Lett., 87 (2001), 4501.  doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[26]

J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation,, Comm. Partial Differential Equations, 33 (2008), 377.  doi: 10.1080/03605300701318872.  Google Scholar

[27]

J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations,, J. Funct. Anal., 256 (2009), 479.  doi: 10.1016/j.jfa.2008.07.010.  Google Scholar

[28]

A. Fokas and B. Fuchssteiner, Symplectic structures, their B$\ddota$cklund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.   Google Scholar

[29]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, Contemp. Math., 526 (2010), 199.  doi: 10.1090/conm/526/10382.  Google Scholar

[30]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 28 (2011), 623.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[31]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Math. Z., 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[32]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[33]

D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.   Google Scholar

[34]

D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation,, Phys. Rev. E(3), 79 (2009), 1.   Google Scholar

[35]

D. Ionescu-Krus, Variational derivation of the Camassa-Holm shallow water equation,, J. Nonlinear Math. Phys., 14 (2007), 303.  doi: 10.2991/jnmp.2007.14.3.1.  Google Scholar

[36]

R. Ivanov, Water waves and integrability,, Philos. Trans. R. Soc. Lond. Ser. A., 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[37]

R. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 457 (2002), 63.   Google Scholar

[38]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 25.   Google Scholar

[39]

Y. Li and P. Oliver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[40]

X. Liu and Z. Yin, On the low regularity solutions for a modified two-component Camassa-Holm shallow water system,, Glasgow. Math. J., 53 (2011), 611.  doi: 10.1017/S0017089511000176.  Google Scholar

[41]

J. Marsden and T. Ratiu, "Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanics and Systems,", 2nd ed., 17 (1999).   Google Scholar

[42]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[43]

W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm equation shallow water system,, J. Math. Phys., 52 (2011), 1.  doi: 10.1063/1.3562928.  Google Scholar

[44]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,, J. Funct. Anal., 261 (2011), 1204.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[45]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1.   Google Scholar

[46]

G. B. Whitham, "Linear and Nonlinear Waves,", J. Wiley and Sons, (1980).   Google Scholar

[47]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.3.CO;2-X.  Google Scholar

[48]

K. Yan and Z. Yin, Analytic solutions of the Cauchy problem for two-component shallow water systems,, Math. Z., 269 (2011), 1113.  doi: 10.1007/s00209-010-0775-5.  Google Scholar

[49]

Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation,, Discrete Contin. Dyn. Syst., 11 (2004), 393.  doi: 10.3934/dcds.2004.11.393.  Google Scholar

show all references

References:
[1]

R. Beals, D. Scattinger and J. Szmigielski, Acoustic scatting and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.   Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[6]

J.-Y. Chemin, "Perfect Incompressible Fluids,", in, (1998).   Google Scholar

[7]

G. M. Coclite, H. Holden and K. H. Karlsen., Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2006), 1044.  doi: 10.1137/040616711.  Google Scholar

[8]

A. Constantin, The Hamiltonian structure of the Camassa-Holm equation,, Exposition. Math., 15 (1997), 53.   Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[10]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[11]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[12]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 1992 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[13]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303.   Google Scholar

[14]

A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[15]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[16]

A. Constantin and J. Escher, On the blow-up rate and the blow-up of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75.  doi: 10.1007/PL00004793.  Google Scholar

[17]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[18]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[19]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.  doi: 10.1007/s002200050801.  Google Scholar

[20]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.  Google Scholar

[21]

H. Dai, Model equations for nolinear dispersive waves in compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193.  doi: 10.1007/BF01170373.  Google Scholar

[22]

R. Dachin, A few remarks on the Camassa-Holm equation,, Differential Integral Equations, 14 (2001), 953.   Google Scholar

[23]

R. Dachin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[24]

R. Dachin, "Fourier Analysis Methods for PDEs,", Lecture Notes, (2003).   Google Scholar

[25]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integral shallow water equation with linear and nonlinear dispersion,, Phys. Rev. Lett., 87 (2001), 4501.  doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[26]

J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation,, Comm. Partial Differential Equations, 33 (2008), 377.  doi: 10.1080/03605300701318872.  Google Scholar

[27]

J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations,, J. Funct. Anal., 256 (2009), 479.  doi: 10.1016/j.jfa.2008.07.010.  Google Scholar

[28]

A. Fokas and B. Fuchssteiner, Symplectic structures, their B$\ddota$cklund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.   Google Scholar

[29]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, Contemp. Math., 526 (2010), 199.  doi: 10.1090/conm/526/10382.  Google Scholar

[30]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 28 (2011), 623.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[31]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Math. Z., 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[32]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[33]

D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.   Google Scholar

[34]

D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation,, Phys. Rev. E(3), 79 (2009), 1.   Google Scholar

[35]

D. Ionescu-Krus, Variational derivation of the Camassa-Holm shallow water equation,, J. Nonlinear Math. Phys., 14 (2007), 303.  doi: 10.2991/jnmp.2007.14.3.1.  Google Scholar

[36]

R. Ivanov, Water waves and integrability,, Philos. Trans. R. Soc. Lond. Ser. A., 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[37]

R. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 457 (2002), 63.   Google Scholar

[38]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 25.   Google Scholar

[39]

Y. Li and P. Oliver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[40]

X. Liu and Z. Yin, On the low regularity solutions for a modified two-component Camassa-Holm shallow water system,, Glasgow. Math. J., 53 (2011), 611.  doi: 10.1017/S0017089511000176.  Google Scholar

[41]

J. Marsden and T. Ratiu, "Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanics and Systems,", 2nd ed., 17 (1999).   Google Scholar

[42]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[43]

W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm equation shallow water system,, J. Math. Phys., 52 (2011), 1.  doi: 10.1063/1.3562928.  Google Scholar

[44]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,, J. Funct. Anal., 261 (2011), 1204.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[45]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1.   Google Scholar

[46]

G. B. Whitham, "Linear and Nonlinear Waves,", J. Wiley and Sons, (1980).   Google Scholar

[47]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.3.CO;2-X.  Google Scholar

[48]

K. Yan and Z. Yin, Analytic solutions of the Cauchy problem for two-component shallow water systems,, Math. Z., 269 (2011), 1113.  doi: 10.1007/s00209-010-0775-5.  Google Scholar

[49]

Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation,, Discrete Contin. Dyn. Syst., 11 (2004), 393.  doi: 10.3934/dcds.2004.11.393.  Google Scholar

[1]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[2]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[3]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[4]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[5]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[6]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[7]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[8]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[9]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[10]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[11]

Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6633-6652. doi: 10.3934/dcdsb.2019160

[12]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[13]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[14]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[15]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[16]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[17]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

[18]

Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153

[19]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[20]

Guangying Lv, Mingxin Wang. Some remarks for a modified periodic Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1161-1180. doi: 10.3934/dcds.2011.30.1161

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]