April  2013, 33(4): 1699-1712. doi: 10.3934/dcds.2013.33.1699

Well-posedness for a modified two-component Camassa-Holm system in critical spaces

1. 

Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou, China

Received  June 2011 Revised  September 2012 Published  October 2012

This paper is concerned with the problem of well-posedness for a modified two-component Camassa-Holm system in Besov spaces with the critical index $s=\frac 3 2$.
Citation: Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699
References:
[1]

R. Beals, D. Scattinger and J. Szmigielski, Acoustic scatting and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.   Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[6]

J.-Y. Chemin, "Perfect Incompressible Fluids,", in, (1998).   Google Scholar

[7]

G. M. Coclite, H. Holden and K. H. Karlsen., Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2006), 1044.  doi: 10.1137/040616711.  Google Scholar

[8]

A. Constantin, The Hamiltonian structure of the Camassa-Holm equation,, Exposition. Math., 15 (1997), 53.   Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[10]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[11]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[12]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 1992 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[13]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303.   Google Scholar

[14]

A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[15]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[16]

A. Constantin and J. Escher, On the blow-up rate and the blow-up of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75.  doi: 10.1007/PL00004793.  Google Scholar

[17]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[18]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[19]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.  doi: 10.1007/s002200050801.  Google Scholar

[20]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.  Google Scholar

[21]

H. Dai, Model equations for nolinear dispersive waves in compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193.  doi: 10.1007/BF01170373.  Google Scholar

[22]

R. Dachin, A few remarks on the Camassa-Holm equation,, Differential Integral Equations, 14 (2001), 953.   Google Scholar

[23]

R. Dachin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[24]

R. Dachin, "Fourier Analysis Methods for PDEs,", Lecture Notes, (2003).   Google Scholar

[25]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integral shallow water equation with linear and nonlinear dispersion,, Phys. Rev. Lett., 87 (2001), 4501.  doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[26]

J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation,, Comm. Partial Differential Equations, 33 (2008), 377.  doi: 10.1080/03605300701318872.  Google Scholar

[27]

J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations,, J. Funct. Anal., 256 (2009), 479.  doi: 10.1016/j.jfa.2008.07.010.  Google Scholar

[28]

A. Fokas and B. Fuchssteiner, Symplectic structures, their B$\ddota$cklund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.   Google Scholar

[29]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, Contemp. Math., 526 (2010), 199.  doi: 10.1090/conm/526/10382.  Google Scholar

[30]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 28 (2011), 623.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[31]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Math. Z., 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[32]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[33]

D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.   Google Scholar

[34]

D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation,, Phys. Rev. E(3), 79 (2009), 1.   Google Scholar

[35]

D. Ionescu-Krus, Variational derivation of the Camassa-Holm shallow water equation,, J. Nonlinear Math. Phys., 14 (2007), 303.  doi: 10.2991/jnmp.2007.14.3.1.  Google Scholar

[36]

R. Ivanov, Water waves and integrability,, Philos. Trans. R. Soc. Lond. Ser. A., 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[37]

R. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 457 (2002), 63.   Google Scholar

[38]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 25.   Google Scholar

[39]

Y. Li and P. Oliver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[40]

X. Liu and Z. Yin, On the low regularity solutions for a modified two-component Camassa-Holm shallow water system,, Glasgow. Math. J., 53 (2011), 611.  doi: 10.1017/S0017089511000176.  Google Scholar

[41]

J. Marsden and T. Ratiu, "Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanics and Systems,", 2nd ed., 17 (1999).   Google Scholar

[42]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[43]

W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm equation shallow water system,, J. Math. Phys., 52 (2011), 1.  doi: 10.1063/1.3562928.  Google Scholar

[44]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,, J. Funct. Anal., 261 (2011), 1204.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[45]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1.   Google Scholar

[46]

G. B. Whitham, "Linear and Nonlinear Waves,", J. Wiley and Sons, (1980).   Google Scholar

[47]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.3.CO;2-X.  Google Scholar

[48]

K. Yan and Z. Yin, Analytic solutions of the Cauchy problem for two-component shallow water systems,, Math. Z., 269 (2011), 1113.  doi: 10.1007/s00209-010-0775-5.  Google Scholar

[49]

Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation,, Discrete Contin. Dyn. Syst., 11 (2004), 393.  doi: 10.3934/dcds.2004.11.393.  Google Scholar

show all references

References:
[1]

R. Beals, D. Scattinger and J. Szmigielski, Acoustic scatting and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.  doi: 10.1006/aima.1998.1768.  Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.   Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[6]

J.-Y. Chemin, "Perfect Incompressible Fluids,", in, (1998).   Google Scholar

[7]

G. M. Coclite, H. Holden and K. H. Karlsen., Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2006), 1044.  doi: 10.1137/040616711.  Google Scholar

[8]

A. Constantin, The Hamiltonian structure of the Camassa-Holm equation,, Exposition. Math., 15 (1997), 53.   Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321.  doi: 10.5802/aif.1757.  Google Scholar

[10]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London A, 457 (2001), 953.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[11]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[12]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 1992 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[13]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303.   Google Scholar

[14]

A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475.  doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.  Google Scholar

[15]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[16]

A. Constantin and J. Escher, On the blow-up rate and the blow-up of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75.  doi: 10.1007/PL00004793.  Google Scholar

[17]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[18]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[19]

A. Constantin and L. Molinet, Global weak solutions for a shallow water equation,, Comm. Math. Phys., 211 (2000), 45.  doi: 10.1007/s002200050801.  Google Scholar

[20]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.  Google Scholar

[21]

H. Dai, Model equations for nolinear dispersive waves in compressible Mooney-Rivlin rod,, Acta Mech., 127 (1998), 193.  doi: 10.1007/BF01170373.  Google Scholar

[22]

R. Dachin, A few remarks on the Camassa-Holm equation,, Differential Integral Equations, 14 (2001), 953.   Google Scholar

[23]

R. Dachin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[24]

R. Dachin, "Fourier Analysis Methods for PDEs,", Lecture Notes, (2003).   Google Scholar

[25]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integral shallow water equation with linear and nonlinear dispersion,, Phys. Rev. Lett., 87 (2001), 4501.  doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[26]

J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation,, Comm. Partial Differential Equations, 33 (2008), 377.  doi: 10.1080/03605300701318872.  Google Scholar

[27]

J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations,, J. Funct. Anal., 256 (2009), 479.  doi: 10.1016/j.jfa.2008.07.010.  Google Scholar

[28]

A. Fokas and B. Fuchssteiner, Symplectic structures, their B$\ddota$cklund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.   Google Scholar

[29]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, Contemp. Math., 526 (2010), 199.  doi: 10.1090/conm/526/10382.  Google Scholar

[30]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 28 (2011), 623.  doi: 10.1016/j.anihpc.2011.04.003.  Google Scholar

[31]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Math. Z., 268 (2011), 45.  doi: 10.1007/s00209-009-0660-2.  Google Scholar

[32]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[33]

D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.   Google Scholar

[34]

D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation,, Phys. Rev. E(3), 79 (2009), 1.   Google Scholar

[35]

D. Ionescu-Krus, Variational derivation of the Camassa-Holm shallow water equation,, J. Nonlinear Math. Phys., 14 (2007), 303.  doi: 10.2991/jnmp.2007.14.3.1.  Google Scholar

[36]

R. Ivanov, Water waves and integrability,, Philos. Trans. R. Soc. Lond. Ser. A., 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[37]

R. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 457 (2002), 63.   Google Scholar

[38]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 25.   Google Scholar

[39]

Y. Li and P. Oliver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation,, J. Differential Equations, 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[40]

X. Liu and Z. Yin, On the low regularity solutions for a modified two-component Camassa-Holm shallow water system,, Glasgow. Math. J., 53 (2011), 611.  doi: 10.1017/S0017089511000176.  Google Scholar

[41]

J. Marsden and T. Ratiu, "Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanics and Systems,", 2nd ed., 17 (1999).   Google Scholar

[42]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, Nonlinear Anal., 46 (2001), 309.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[43]

W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm equation shallow water system,, J. Math. Phys., 52 (2011), 1.  doi: 10.1063/1.3562928.  Google Scholar

[44]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,, J. Funct. Anal., 261 (2011), 1204.  doi: 10.1016/j.jfa.2011.04.015.  Google Scholar

[45]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1.   Google Scholar

[46]

G. B. Whitham, "Linear and Nonlinear Waves,", J. Wiley and Sons, (1980).   Google Scholar

[47]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.3.CO;2-X.  Google Scholar

[48]

K. Yan and Z. Yin, Analytic solutions of the Cauchy problem for two-component shallow water systems,, Math. Z., 269 (2011), 1113.  doi: 10.1007/s00209-010-0775-5.  Google Scholar

[49]

Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation,, Discrete Contin. Dyn. Syst., 11 (2004), 393.  doi: 10.3934/dcds.2004.11.393.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[11]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[12]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[13]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]