Citation: |
[1] |
R. Beals, D. Scattinger and J. Szmigielski, Acoustic scatting and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.doi: 10.1006/aima.1998.1768. |
[2] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z. |
[3] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27. |
[4] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661. |
[5] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.doi: 10.1016/S0065-2156(08)70254-0. |
[6] |
J.-Y. Chemin, "Perfect Incompressible Fluids," in "Oxford Lecture Series in Mathematics and its Applications", Vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. |
[7] |
G. M. Coclite, H. Holden and K. H. Karlsen., Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2006), 1044-1069.doi: 10.1137/040616711. |
[8] |
A. Constantin, The Hamiltonian structure of the Camassa-Holm equation, Exposition. Math., 15 (1997), 53-85. |
[9] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757. |
[10] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701. |
[11] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5. |
[12] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 1992 (2009), 165-186.doi: 10.1007/s00205-008-0128-2. |
[13] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303-328. |
[14] |
A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. |
[15] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586. |
[16] |
A. Constantin and J. Escher, On the blow-up rate and the blow-up of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.doi: 10.1007/PL00004793. |
[17] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7. |
[18] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12. |
[19] |
A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.doi: 10.1007/s002200050801. |
[20] |
A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. |
[21] |
H. Dai, Model equations for nolinear dispersive waves in compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.doi: 10.1007/BF01170373. |
[22] |
R. Dachin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988. |
[23] |
R. Dachin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.doi: 10.1016/S0022-0396(03)00096-2. |
[24] |
R. Dachin, "Fourier Analysis Methods for PDEs," Lecture Notes, 14 November 2003. |
[25] |
H. R. Dullin, G. A. Gottwald and D. D. Holm, An integral shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 4501-4504.doi: 10.1103/PhysRevLett.87.194501. |
[26] |
J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation, Comm. Partial Differential Equations, 33 (2008), 377-395.doi: 10.1080/03605300701318872. |
[27] |
J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508.doi: 10.1016/j.jfa.2008.07.010. |
[28] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their B$\ddota$cklund transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66. |
[29] |
C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, Contemp. Math., 526 (2010), 199-220.doi: 10.1090/conm/526/10382. |
[30] |
C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 28 (2011), 623-641.doi: 10.1016/j.anihpc.2011.04.003. |
[31] |
G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.doi: 10.1007/s00209-009-0660-2. |
[32] |
H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation - a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.doi: 10.1080/03605300601088674. |
[33] |
D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81. |
[34] |
D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation, Phys. Rev. E(3),79 (2009), 1-13. |
[35] |
D. Ionescu-Krus, Variational derivation of the Camassa-Holm shallow water equation, J. Nonlinear Math. Phys., 14 (2007), 303-312.doi: 10.2991/jnmp.2007.14.3.1. |
[36] |
R. Ivanov, Water waves and integrability, Philos. Trans. R. Soc. Lond. Ser. A., Math. Phys. Eng. Sci., 365 (2007), 2267-2280.doi: 10.1098/rsta.2007.2007. |
[37] |
R. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 457 (2002), 63-82. |
[38] |
T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in "Spectral Theory and Differential Equations", Lecture Notes in Math., 448, Springer Verlag, Berlin, (1975), 25-70. |
[39] |
Y. Li and P. Oliver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.doi: 10.1006/jdeq.1999.3683. |
[40] |
X. Liu and Z. Yin, On the low regularity solutions for a modified two-component Camassa-Holm shallow water system, Glasgow. Math. J., 53 (2011), 611-621.doi: 10.1017/S0017089511000176. |
[41] |
J. Marsden and T. Ratiu, "Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanics and Systems," 2nd ed., Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999. |
[42] |
G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.doi: 10.1016/S0362-546X(01)00791-X. |
[43] |
W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm equation shallow water system, J. Math. Phys., 52 (2011), 1-24. 033507.doi: 10.1063/1.3562928. |
[44] |
W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261 (2011), 1204-1226.doi: 10.1016/j.jfa.2011.04.015. |
[45] |
J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48. |
[46] |
G. B. Whitham, "Linear and Nonlinear Waves," J. Wiley and Sons, New York, 1980. |
[47] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.3.CO;2-X. |
[48] |
K. Yan and Z. Yin, Analytic solutions of the Cauchy problem for two-component shallow water systems, Math. Z., 269 (2011), 1113-1127.doi: 10.1007/s00209-010-0775-5. |
[49] |
Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation, Discrete Contin. Dyn. Syst., 11 (2004), 393-411.doi: 10.3934/dcds.2004.11.393. |