April  2013, 33(4): 1713-1739. doi: 10.3934/dcds.2013.33.1713

Global conservative and dissipative solutions of the generalized Camassa-Holm equation

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China, China

Received  November 2011 Revised  February 2012 Published  October 2012

This paper is devoted to the continuation of solutions to the generalized Camassa-Holm equation beyond wave breaking. By introducing a new set of independent and dependent variables, the evolution problem is rewritten as a semilinear system. This formulation allows one to continue the solution after collision time, giving either a global conservative solution where the energy is conserved for almost all times or a dissipative solution where energy may vanish from the system. Local existence of the semilinear system is obtained as fixed points of a contractive transformation. These new variables resolve all singularities due to possible wave breaking. Returning to the original variables, we obtain a semigroup of global conservative or dissipative solutions, which depend continuously on the initial data.
Citation: Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713
References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rational Mech. Anal., 183 (2007), 215.

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1. doi: 10.1142/S0219530507000857.

[4]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London(A), 457 (2001), 953.

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.

[7]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.

[8]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. doi: 10.1016/S0065-2156(08)70254-0.

[9]

G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.

[10]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.

[11]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.

[12]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.

[13]

A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140. doi: 10.1016/S0375-9601(00)00255-3.

[14]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.

[15]

H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331. doi: 10.1098/rspa.2000.0520.

[16]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.

[17]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.

[18]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.

[19]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.

[20]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A, 38 (2005), 869. doi: 10.1088/0305-4470/38/4/007.

[21]

O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 64 (2006), 1382.

[22]

O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205.

[23]

O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation,, Int. Math. Res. Notices, (2007).

[24]

O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation,, J. Nonlinear Math. Phys., 15 (2008), 96.

[25]

L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 19 (2004), 621.

[26]

J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 26 (2005), 1149.

[27]

Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation,, J. Nonlinear Math. Phys., 10 (2003), 10. doi: 10.2991/jnmp.2003.10.1.2.

[28]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 66 (2007), 460.

[29]

Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation,, Comm. Partial Differential Equations, 29 (2004), 867.

show all references

References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rational Mech. Anal., 183 (2007), 215.

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1. doi: 10.1142/S0219530507000857.

[4]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London(A), 457 (2001), 953.

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.

[7]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.

[8]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. doi: 10.1016/S0065-2156(08)70254-0.

[9]

G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.

[10]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.

[11]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.

[12]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.

[13]

A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140. doi: 10.1016/S0375-9601(00)00255-3.

[14]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.

[15]

H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331. doi: 10.1098/rspa.2000.0520.

[16]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.

[17]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.

[18]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.

[19]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.

[20]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A, 38 (2005), 869. doi: 10.1088/0305-4470/38/4/007.

[21]

O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 64 (2006), 1382.

[22]

O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205.

[23]

O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation,, Int. Math. Res. Notices, (2007).

[24]

O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation,, J. Nonlinear Math. Phys., 15 (2008), 96.

[25]

L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 19 (2004), 621.

[26]

J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 26 (2005), 1149.

[27]

Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation,, J. Nonlinear Math. Phys., 10 (2003), 10. doi: 10.2991/jnmp.2003.10.1.2.

[28]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 66 (2007), 460.

[29]

Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation,, Comm. Partial Differential Equations, 29 (2004), 867.

[1]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[2]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[3]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[4]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[5]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[6]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[7]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[8]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[9]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[10]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[11]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[12]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[13]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[14]

Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209

[15]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[16]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[17]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[18]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[19]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[20]

Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]