April  2013, 33(4): 1713-1739. doi: 10.3934/dcds.2013.33.1713

Global conservative and dissipative solutions of the generalized Camassa-Holm equation

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China, China

Received  November 2011 Revised  February 2012 Published  October 2012

This paper is devoted to the continuation of solutions to the generalized Camassa-Holm equation beyond wave breaking. By introducing a new set of independent and dependent variables, the evolution problem is rewritten as a semilinear system. This formulation allows one to continue the solution after collision time, giving either a global conservative solution where the energy is conserved for almost all times or a dissipative solution where energy may vanish from the system. Local existence of the semilinear system is obtained as fixed points of a contractive transformation. These new variables resolve all singularities due to possible wave breaking. Returning to the original variables, we obtain a semigroup of global conservative or dissipative solutions, which depend continuously on the initial data.
Citation: Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713
References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.   Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rational Mech. Anal., 183 (2007), 215.   Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[4]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.   Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London(A), 457 (2001), 953.   Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.   Google Scholar

[7]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.   Google Scholar

[8]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[9]

G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.   Google Scholar

[10]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.   Google Scholar

[11]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.   Google Scholar

[12]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.   Google Scholar

[13]

A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140.  doi: 10.1016/S0375-9601(00)00255-3.  Google Scholar

[14]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.   Google Scholar

[15]

H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331.  doi: 10.1098/rspa.2000.0520.  Google Scholar

[16]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.   Google Scholar

[17]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.   Google Scholar

[18]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.   Google Scholar

[19]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.   Google Scholar

[20]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A, 38 (2005), 869.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[21]

O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 64 (2006), 1382.   Google Scholar

[22]

O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205.   Google Scholar

[23]

O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation,, Int. Math. Res. Notices, (2007).   Google Scholar

[24]

O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation,, J. Nonlinear Math. Phys., 15 (2008), 96.   Google Scholar

[25]

L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 19 (2004), 621.   Google Scholar

[26]

J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 26 (2005), 1149.   Google Scholar

[27]

Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation,, J. Nonlinear Math. Phys., 10 (2003), 10.  doi: 10.2991/jnmp.2003.10.1.2.  Google Scholar

[28]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 66 (2007), 460.   Google Scholar

[29]

Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation,, Comm. Partial Differential Equations, 29 (2004), 867.   Google Scholar

show all references

References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy,, Adv. Math., 140 (1998), 190.   Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Rational Mech. Anal., 183 (2007), 215.   Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl. (Singap.), 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[4]

A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line,, C. R. Math. Acad. Sci. Paris, 343 (2006), 627.   Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. Roy. Soc. London(A), 457 (2001), 953.   Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523.   Google Scholar

[7]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.   Google Scholar

[8]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.  doi: 10.1016/S0065-2156(08)70254-0.  Google Scholar

[9]

G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.   Google Scholar

[10]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559.   Google Scholar

[11]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.   Google Scholar

[12]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.   Google Scholar

[13]

A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods,, Phys. Lett. A, 270 (2000), 140.  doi: 10.1016/S0375-9601(00)00255-3.  Google Scholar

[14]

A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons,, J. Nonlinear. Sci., 12 (2002), 415.   Google Scholar

[15]

H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331.  doi: 10.1098/rspa.2000.0520.  Google Scholar

[16]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries,, Phys. D, 4 (1981), 47.   Google Scholar

[17]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.   Google Scholar

[18]

H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation,, J. Differential Equations, 233 (2007), 448.   Google Scholar

[19]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047.   Google Scholar

[20]

J. Lenells, Conservation laws of the Camassa-Holm equation,, J. Phys. A, 38 (2005), 869.  doi: 10.1088/0305-4470/38/4/007.  Google Scholar

[21]

O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 64 (2006), 1382.   Google Scholar

[22]

O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205.   Google Scholar

[23]

O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation,, Int. Math. Res. Notices, (2007).   Google Scholar

[24]

O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation,, J. Nonlinear Math. Phys., 15 (2008), 96.   Google Scholar

[25]

L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 19 (2004), 621.   Google Scholar

[26]

J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation,, Chaos Solitons Fractals, 26 (2005), 1149.   Google Scholar

[27]

Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation,, J. Nonlinear Math. Phys., 10 (2003), 10.  doi: 10.2991/jnmp.2003.10.1.2.  Google Scholar

[28]

Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation,, Nonlinear Anal. TMA, 66 (2007), 460.   Google Scholar

[29]

Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation,, Comm. Partial Differential Equations, 29 (2004), 867.   Google Scholar

[1]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[2]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[3]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[6]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[10]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[11]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[12]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[13]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[14]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[15]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[16]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[17]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[19]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]