\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global conservative and dissipative solutions of the generalized Camassa-Holm equation

Abstract Related Papers Cited by
  • This paper is devoted to the continuation of solutions to the generalized Camassa-Holm equation beyond wave breaking. By introducing a new set of independent and dependent variables, the evolution problem is rewritten as a semilinear system. This formulation allows one to continue the solution after collision time, giving either a global conservative solution where the energy is conserved for almost all times or a dissipative solution where energy may vanish from the system. Local existence of the semilinear system is obtained as fixed points of a contractive transformation. These new variables resolve all singularities due to possible wave breaking. Returning to the original variables, we obtain a semigroup of global conservative or dissipative solutions, which depend continuously on the initial data.
    Mathematics Subject Classification: Primary: 65M06, 65M12; Secondary: 35B10, 35Q53.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Beals, D. Sattinger and J. Szmigielski, Acoustic scattering and the extended Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190-206.

    [2]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Rational Mech. Anal., 183 (2007), 215-239.

    [3]

    A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27.doi: 10.1142/S0219530507000857.

    [4]

    A. Boutet de Monvel and D. Shepelsky, Riemann-Hilbert approach for the Camassa-Holm equation on the line, C. R. Math. Acad. Sci. Paris, 343 (2006), 627-632.

    [5]

    A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London(A), 457 (2001), 953-970.

    [6]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.

    [7]

    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.

    [8]

    R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.doi: 10.1016/S0065-2156(08)70254-0.

    [9]

    G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069.

    [10]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.

    [11]

    A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.

    [12]

    A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.

    [13]

    A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (2000), 140-148.doi: 10.1016/S0375-9601(00)00255-3.

    [14]

    A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422.

    [15]

    H. H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331-363.doi: 10.1098/rspa.2000.0520.

    [16]

    A. Fokas and B. Fuchssteiner, Symplectic structures, their Backlund transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66.

    [17]

    H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007) 1511-1549.

    [18]

    H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, 233 (2007), 448-484.

    [19]

    H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24 (2009), 1047-1112.

    [20]

    J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A, 38 (2005), 869-880.doi: 10.1088/0305-4470/38/4/007.

    [21]

    O. G. Mustafa, On the Cauchy problem for a generalized Camassa-Holm equation, Nonlinear Anal. TMA, 64 (2006), 1382-1399.

    [22]

    O. G. Mustafa, Solitary waves for a generalized Camassa-Holm equation, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 205-212.

    [23]

    O. G. Mustafa, Global conservative solutions of the hyperelastic rod equation, Int. Math. Res. Notices, (2007), Art. ID rnm 040, 26 pp.

    [24]

    O. G. Mustafa, Global dissipative solution of the generalized Camassa-Holm equation, J. Nonlinear Math. Phys., 15 (2008), 96-115.

    [25]

    L. Tian and X. Song, New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Solitons Fractals, 19 (2004), 621-637.

    [26]

    J. Shen and W. Xu, Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos Solitons Fractals, 26 (2005), 1149-1162.

    [27]

    Z. Yin, On the Cauchy problem for a nonlinearly dispersive wave equation, J. Nonlinear Math. Phys., 10 (2003), 10-15.doi: 10.2991/jnmp.2003.10.1.2.

    [28]

    Z. Yin, On the Cauchy problem for the generalized Camassa-Holm equation, Nonlinear Anal. TMA, 66 (2007), 460-471.

    [29]

    Z. Yin, On the blow-up scenario for the generalized Camassa-Holm equation, Comm. Partial Differential Equations, 29 (2004), 867-877.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return