May  2013, 33(5): 1741-1771. doi: 10.3934/dcds.2013.33.1741

Persistence of Hölder continuity for non-local integro-differential equations

1. 

Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712, United States

Received  December 2011 Revised  April 2012 Published  December 2012

In this paper, we consider non-local integro-differential equations under certain natural assumptions on the kernel, and obtain persistence of Hölder continuity for their solutions. In other words, we prove that a solution stays in $C^\beta$ for all time if its initial data lies in $C^\beta$. This result has an application for a fully non-linear problem, which is used in the field of image processing. In addition, we show Hölder regularity for solutions of drift diffusion equations with supercritical fractional diffusion under the assumption $b\in L^\infty C^{1-\alpha}$ on the divergent-free drift velocity. The proof is in the spirit of [23] where Kiselev and Nazarov established Hölder continuity of the critical surface quasi-geostrophic (SQG) equation.
Citation: Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741
References:
[1]

Martin T. Barlow, Richard F. Bass, Zhen-Qing Chen and Moritz Kassmann, Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc., 361 (2009), 1963-1999. doi: 10.1090/S0002-9947-08-04544-3.  Google Scholar

[2]

Richard F. Bass and David A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354 (2002), 2933-2953. doi: 10.1090/S0002-9947-02-02998-7.  Google Scholar

[3]

P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert, Ann. Inst. Fourier (Grenoble), 22 (1972), 311-329.  Google Scholar

[4]

Luis Caffarelli, Chi Hin Chan and Alexis Vasseur, Regularity theory for parabolic nonlinear integral operators, J. Amer. Math. Soc., 24 (2011), 849-869. doi: 10.1090/S0894-0347-2011-00698-X.  Google Scholar

[5]

Luis Caffarelli and Alessio Figalli, Regularity of solutions to the parabolic fractional obstacle problem,, preprint, ().   Google Scholar

[6]

Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638. doi: 10.1002/cpa.20274.  Google Scholar

[7]

Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903.  Google Scholar

[8]

Dongho Chae, Peter Constantin and Jiahong Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 202 (2011), 35-62. doi: 10.1007/s00205-011-0411-5.  Google Scholar

[9]

Zhen-Qing Chen, Panki Kim and Takashi Kumagai, Global heat kernel estimates for symmetric jump processes, Trans. Amer. Math. Soc., 363 (2011), 5021-5055. doi: 10.1090/S0002-9947-2011-05408-5.  Google Scholar

[10]

Peter Constantin, Gautam Iyer and Jiahong Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 57 (2008), 2681-2692. doi: 10.1512/iumj.2008.57.3629.  Google Scholar

[11]

Peter Constantin and Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321. doi: 10.1007/s00039-012-0172-9.  Google Scholar

[12]

Peter Constantin and Jiahong Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1103-1110. doi: 10.1016/j.anihpc.2007.10.001.  Google Scholar

[13]

Peter Constantin and Jiahong Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 159-180. doi: 10.1016/j.anihpc.2007.10.002.  Google Scholar

[14]

Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.  Google Scholar

[15]

Michael Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation, Geom. Funct. Anal., 21 (2011), 1-13. doi: 10.1007/s00039-011-0108-9.  Google Scholar

[16]

Hongjie Dong and Nataša Pavlović, Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces, Comm. Math. Phys., 290 (2009), 801-812. doi: 10.1007/s00220-009-0756-x.  Google Scholar

[17]

Bartlomiej Dyda and Moritz Kassmann, Comparability and regularity estimates for symmetric nonlocal dirichlet forms,, preprint, ().   Google Scholar

[18]

Susan Friedlander and Vlad Vicol, Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 283-301. doi: 10.1016/j.anihpc.2011.01.002.  Google Scholar

[19]

Giambattista Giacomin, Joel L. Lebowitz and Errico Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, in "Stochastic Partial Differential Equations: Six Perspectives" 64 of Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, (1999), 107-152.  Google Scholar

[20]

Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028. doi: 10.1137/070698592.  Google Scholar

[21]

Niels Jacob, Alexander Potrykus and Jiang-Lun Wu, Solving a non-linear stochastic pseudo-differential equation of Burgers type, Stochastic Process. Appl., 120 (2010), 2447-2467. doi: 10.1016/j.spa.2010.08.007.  Google Scholar

[22]

Moritz Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differential Equations, 34 (2009), 1-21. doi: 10.1007/s00526-008-0173-6.  Google Scholar

[23]

A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2010), 58-72. (dedicated to Nina Nikolaevna Uraltseva). doi: 10.1007/s10958-010-9842-z.  Google Scholar

[24]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3.  Google Scholar

[25]

Takashi Komatsu, Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms, Osaka J. Math., 25 (1988), 697-728.  Google Scholar

[26]

Takashi Komatsu, Uniform estimates for fundamental solutions associated with non-local Dirichlet forms, Osaka J. Math., 32 (1995), 833-860.  Google Scholar

[27]

Hitoshi Kumano-go, "Pseudodifferential Operators," MIT Press, Cambridge, Mass., 1981. Translated from the Japanese by the author, Rémi Vaillancourt and Michihiro Nagase.  Google Scholar

[28]

Yifei Lou, Xiaoqun Zhang, Stanley Osher and Andrea Bertozzi, Image recovery via nonlocal operators, J. Sci. Comput., 42 (2010), 185-197. doi: 10.1007/s10915-009-9320-2.  Google Scholar

[29]

Changxing Miao and Liutang Xue, On the regularity of a class of generalized quasi-geostrophic equations, J. Differential Equations, 251 (2011), 2789-2821. doi: 10.1016/j.jde.2011.04.018.  Google Scholar

[30]

Russell W. Schwab, Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680. doi: 10.1137/080737897.  Google Scholar

[31]

Luis Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., 55 (2006), 1155-1174. doi: 10.1512/iumj.2006.55.2706.  Google Scholar

[32]

Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar

[33]

Luis Silvestre, Hölder estimates for advection fractional-diffusion equations,, preprint, ().   Google Scholar

[34]

Luis Silvestre, On the differentiability of the solution to an equation with drift and fractional diffusion,, preprint, ().   Google Scholar

[35]

Elias M. Stein, "Harmonic Analysis," Princeton University Press, NJ, 1993.  Google Scholar

show all references

References:
[1]

Martin T. Barlow, Richard F. Bass, Zhen-Qing Chen and Moritz Kassmann, Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc., 361 (2009), 1963-1999. doi: 10.1090/S0002-9947-08-04544-3.  Google Scholar

[2]

Richard F. Bass and David A. Levin, Transition probabilities for symmetric jump processes, Trans. Amer. Math. Soc., 354 (2002), 2933-2953. doi: 10.1090/S0002-9947-02-02998-7.  Google Scholar

[3]

P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert, Ann. Inst. Fourier (Grenoble), 22 (1972), 311-329.  Google Scholar

[4]

Luis Caffarelli, Chi Hin Chan and Alexis Vasseur, Regularity theory for parabolic nonlinear integral operators, J. Amer. Math. Soc., 24 (2011), 849-869. doi: 10.1090/S0894-0347-2011-00698-X.  Google Scholar

[5]

Luis Caffarelli and Alessio Figalli, Regularity of solutions to the parabolic fractional obstacle problem,, preprint, ().   Google Scholar

[6]

Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638. doi: 10.1002/cpa.20274.  Google Scholar

[7]

Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903.  Google Scholar

[8]

Dongho Chae, Peter Constantin and Jiahong Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 202 (2011), 35-62. doi: 10.1007/s00205-011-0411-5.  Google Scholar

[9]

Zhen-Qing Chen, Panki Kim and Takashi Kumagai, Global heat kernel estimates for symmetric jump processes, Trans. Amer. Math. Soc., 363 (2011), 5021-5055. doi: 10.1090/S0002-9947-2011-05408-5.  Google Scholar

[10]

Peter Constantin, Gautam Iyer and Jiahong Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 57 (2008), 2681-2692. doi: 10.1512/iumj.2008.57.3629.  Google Scholar

[11]

Peter Constantin and Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289-1321. doi: 10.1007/s00039-012-0172-9.  Google Scholar

[12]

Peter Constantin and Jiahong Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1103-1110. doi: 10.1016/j.anihpc.2007.10.001.  Google Scholar

[13]

Peter Constantin and Jiahong Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 159-180. doi: 10.1016/j.anihpc.2007.10.002.  Google Scholar

[14]

Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.  Google Scholar

[15]

Michael Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation, Geom. Funct. Anal., 21 (2011), 1-13. doi: 10.1007/s00039-011-0108-9.  Google Scholar

[16]

Hongjie Dong and Nataša Pavlović, Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces, Comm. Math. Phys., 290 (2009), 801-812. doi: 10.1007/s00220-009-0756-x.  Google Scholar

[17]

Bartlomiej Dyda and Moritz Kassmann, Comparability and regularity estimates for symmetric nonlocal dirichlet forms,, preprint, ().   Google Scholar

[18]

Susan Friedlander and Vlad Vicol, Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 283-301. doi: 10.1016/j.anihpc.2011.01.002.  Google Scholar

[19]

Giambattista Giacomin, Joel L. Lebowitz and Errico Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, in "Stochastic Partial Differential Equations: Six Perspectives" 64 of Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, (1999), 107-152.  Google Scholar

[20]

Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028. doi: 10.1137/070698592.  Google Scholar

[21]

Niels Jacob, Alexander Potrykus and Jiang-Lun Wu, Solving a non-linear stochastic pseudo-differential equation of Burgers type, Stochastic Process. Appl., 120 (2010), 2447-2467. doi: 10.1016/j.spa.2010.08.007.  Google Scholar

[22]

Moritz Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differential Equations, 34 (2009), 1-21. doi: 10.1007/s00526-008-0173-6.  Google Scholar

[23]

A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2010), 58-72. (dedicated to Nina Nikolaevna Uraltseva). doi: 10.1007/s10958-010-9842-z.  Google Scholar

[24]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3.  Google Scholar

[25]

Takashi Komatsu, Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms, Osaka J. Math., 25 (1988), 697-728.  Google Scholar

[26]

Takashi Komatsu, Uniform estimates for fundamental solutions associated with non-local Dirichlet forms, Osaka J. Math., 32 (1995), 833-860.  Google Scholar

[27]

Hitoshi Kumano-go, "Pseudodifferential Operators," MIT Press, Cambridge, Mass., 1981. Translated from the Japanese by the author, Rémi Vaillancourt and Michihiro Nagase.  Google Scholar

[28]

Yifei Lou, Xiaoqun Zhang, Stanley Osher and Andrea Bertozzi, Image recovery via nonlocal operators, J. Sci. Comput., 42 (2010), 185-197. doi: 10.1007/s10915-009-9320-2.  Google Scholar

[29]

Changxing Miao and Liutang Xue, On the regularity of a class of generalized quasi-geostrophic equations, J. Differential Equations, 251 (2011), 2789-2821. doi: 10.1016/j.jde.2011.04.018.  Google Scholar

[30]

Russell W. Schwab, Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680. doi: 10.1137/080737897.  Google Scholar

[31]

Luis Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., 55 (2006), 1155-1174. doi: 10.1512/iumj.2006.55.2706.  Google Scholar

[32]

Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar

[33]

Luis Silvestre, Hölder estimates for advection fractional-diffusion equations,, preprint, ().   Google Scholar

[34]

Luis Silvestre, On the differentiability of the solution to an equation with drift and fractional diffusion,, preprint, ().   Google Scholar

[35]

Elias M. Stein, "Harmonic Analysis," Princeton University Press, NJ, 1993.  Google Scholar

[1]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[2]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[3]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[4]

Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020044

[5]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053

[6]

Tomasz Dlotko, Tongtong Liang, Yejuan Wang. Critical and super-critical abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1517-1541. doi: 10.3934/dcdsb.2019238

[7]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[8]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[9]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021030

[10]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[11]

Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020100

[12]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[13]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[14]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[15]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[16]

Martin Bohner, Osman Tunç. Qualitative analysis of integro-differential equations with variable retardation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021059

[17]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[18]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[19]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[20]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]