May  2013, 33(5): 1741-1771. doi: 10.3934/dcds.2013.33.1741

Persistence of Hölder continuity for non-local integro-differential equations

1. 

Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712, United States

Received  December 2011 Revised  April 2012 Published  December 2012

In this paper, we consider non-local integro-differential equations under certain natural assumptions on the kernel, and obtain persistence of Hölder continuity for their solutions. In other words, we prove that a solution stays in $C^\beta$ for all time if its initial data lies in $C^\beta$. This result has an application for a fully non-linear problem, which is used in the field of image processing. In addition, we show Hölder regularity for solutions of drift diffusion equations with supercritical fractional diffusion under the assumption $b\in L^\infty C^{1-\alpha}$ on the divergent-free drift velocity. The proof is in the spirit of [23] where Kiselev and Nazarov established Hölder continuity of the critical surface quasi-geostrophic (SQG) equation.
Citation: Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741
References:
[1]

Martin T. Barlow, Richard F. Bass, Zhen-Qing Chen and Moritz Kassmann, Non-local Dirichlet forms and symmetric jump processes,, Trans. Amer. Math. Soc., 361 (2009), 1963.  doi: 10.1090/S0002-9947-08-04544-3.  Google Scholar

[2]

Richard F. Bass and David A. Levin, Transition probabilities for symmetric jump processes,, Trans. Amer. Math. Soc., 354 (2002), 2933.  doi: 10.1090/S0002-9947-02-02998-7.  Google Scholar

[3]

P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert,, Ann. Inst. Fourier (Grenoble), 22 (1972), 311.   Google Scholar

[4]

Luis Caffarelli, Chi Hin Chan and Alexis Vasseur, Regularity theory for parabolic nonlinear integral operators,, J. Amer. Math. Soc., 24 (2011), 849.  doi: 10.1090/S0894-0347-2011-00698-X.  Google Scholar

[5]

Luis Caffarelli and Alessio Figalli, Regularity of solutions to the parabolic fractional obstacle problem,, preprint, ().   Google Scholar

[6]

Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[7]

Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[8]

Dongho Chae, Peter Constantin and Jiahong Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations,, Arch. Ration. Mech. Anal., 202 (2011), 35.  doi: 10.1007/s00205-011-0411-5.  Google Scholar

[9]

Zhen-Qing Chen, Panki Kim and Takashi Kumagai, Global heat kernel estimates for symmetric jump processes,, Trans. Amer. Math. Soc., 363 (2011), 5021.  doi: 10.1090/S0002-9947-2011-05408-5.  Google Scholar

[10]

Peter Constantin, Gautam Iyer and Jiahong Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation,, Indiana Univ. Math. J., 57 (2008), 2681.  doi: 10.1512/iumj.2008.57.3629.  Google Scholar

[11]

Peter Constantin and Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications,, Geom. Funct. Anal., 22 (2012), 1289.  doi: 10.1007/s00039-012-0172-9.  Google Scholar

[12]

Peter Constantin and Jiahong Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1103.  doi: 10.1016/j.anihpc.2007.10.001.  Google Scholar

[13]

Peter Constantin and Jiahong Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 159.  doi: 10.1016/j.anihpc.2007.10.002.  Google Scholar

[14]

Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[15]

Michael Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation,, Geom. Funct. Anal., 21 (2011), 1.  doi: 10.1007/s00039-011-0108-9.  Google Scholar

[16]

Hongjie Dong and Nataša Pavlović, Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces,, Comm. Math. Phys., 290 (2009), 801.  doi: 10.1007/s00220-009-0756-x.  Google Scholar

[17]

Bartlomiej Dyda and Moritz Kassmann, Comparability and regularity estimates for symmetric nonlocal dirichlet forms,, preprint, ().   Google Scholar

[18]

Susan Friedlander and Vlad Vicol, Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 283.  doi: 10.1016/j.anihpc.2011.01.002.  Google Scholar

[19]

Giambattista Giacomin, Joel L. Lebowitz and Errico Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems,, in, 64 (1999), 107.   Google Scholar

[20]

Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing,, Multiscale Model. Simul., 7 (2008), 1005.  doi: 10.1137/070698592.  Google Scholar

[21]

Niels Jacob, Alexander Potrykus and Jiang-Lun Wu, Solving a non-linear stochastic pseudo-differential equation of Burgers type,, Stochastic Process. Appl., 120 (2010), 2447.  doi: 10.1016/j.spa.2010.08.007.  Google Scholar

[22]

Moritz Kassmann, A priori estimates for integro-differential operators with measurable kernels,, Calc. Var. Partial Differential Equations, 34 (2009), 1.  doi: 10.1007/s00526-008-0173-6.  Google Scholar

[23]

A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2010), 58.  doi: 10.1007/s10958-010-9842-z.  Google Scholar

[24]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Math., 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[25]

Takashi Komatsu, Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms,, Osaka J. Math., 25 (1988), 697.   Google Scholar

[26]

Takashi Komatsu, Uniform estimates for fundamental solutions associated with non-local Dirichlet forms,, Osaka J. Math., 32 (1995), 833.   Google Scholar

[27]

Hitoshi Kumano-go, "Pseudodifferential Operators,", MIT Press, (1981).   Google Scholar

[28]

Yifei Lou, Xiaoqun Zhang, Stanley Osher and Andrea Bertozzi, Image recovery via nonlocal operators,, J. Sci. Comput., 42 (2010), 185.  doi: 10.1007/s10915-009-9320-2.  Google Scholar

[29]

Changxing Miao and Liutang Xue, On the regularity of a class of generalized quasi-geostrophic equations,, J. Differential Equations, 251 (2011), 2789.  doi: 10.1016/j.jde.2011.04.018.  Google Scholar

[30]

Russell W. Schwab, Periodic homogenization for nonlinear integro-differential equations,, SIAM J. Math. Anal., 42 (2010), 2652.  doi: 10.1137/080737897.  Google Scholar

[31]

Luis Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55 (2006), 1155.  doi: 10.1512/iumj.2006.55.2706.  Google Scholar

[32]

Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[33]

Luis Silvestre, Hölder estimates for advection fractional-diffusion equations,, preprint, ().   Google Scholar

[34]

Luis Silvestre, On the differentiability of the solution to an equation with drift and fractional diffusion,, preprint, ().   Google Scholar

[35]

Elias M. Stein, "Harmonic Analysis,", Princeton University Press, (1993).   Google Scholar

show all references

References:
[1]

Martin T. Barlow, Richard F. Bass, Zhen-Qing Chen and Moritz Kassmann, Non-local Dirichlet forms and symmetric jump processes,, Trans. Amer. Math. Soc., 361 (2009), 1963.  doi: 10.1090/S0002-9947-08-04544-3.  Google Scholar

[2]

Richard F. Bass and David A. Levin, Transition probabilities for symmetric jump processes,, Trans. Amer. Math. Soc., 354 (2002), 2933.  doi: 10.1090/S0002-9947-02-02998-7.  Google Scholar

[3]

P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert,, Ann. Inst. Fourier (Grenoble), 22 (1972), 311.   Google Scholar

[4]

Luis Caffarelli, Chi Hin Chan and Alexis Vasseur, Regularity theory for parabolic nonlinear integral operators,, J. Amer. Math. Soc., 24 (2011), 849.  doi: 10.1090/S0894-0347-2011-00698-X.  Google Scholar

[5]

Luis Caffarelli and Alessio Figalli, Regularity of solutions to the parabolic fractional obstacle problem,, preprint, ().   Google Scholar

[6]

Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[7]

Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[8]

Dongho Chae, Peter Constantin and Jiahong Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations,, Arch. Ration. Mech. Anal., 202 (2011), 35.  doi: 10.1007/s00205-011-0411-5.  Google Scholar

[9]

Zhen-Qing Chen, Panki Kim and Takashi Kumagai, Global heat kernel estimates for symmetric jump processes,, Trans. Amer. Math. Soc., 363 (2011), 5021.  doi: 10.1090/S0002-9947-2011-05408-5.  Google Scholar

[10]

Peter Constantin, Gautam Iyer and Jiahong Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation,, Indiana Univ. Math. J., 57 (2008), 2681.  doi: 10.1512/iumj.2008.57.3629.  Google Scholar

[11]

Peter Constantin and Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications,, Geom. Funct. Anal., 22 (2012), 1289.  doi: 10.1007/s00039-012-0172-9.  Google Scholar

[12]

Peter Constantin and Jiahong Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1103.  doi: 10.1016/j.anihpc.2007.10.001.  Google Scholar

[13]

Peter Constantin and Jiahong Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 159.  doi: 10.1016/j.anihpc.2007.10.002.  Google Scholar

[14]

Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[15]

Michael Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation,, Geom. Funct. Anal., 21 (2011), 1.  doi: 10.1007/s00039-011-0108-9.  Google Scholar

[16]

Hongjie Dong and Nataša Pavlović, Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces,, Comm. Math. Phys., 290 (2009), 801.  doi: 10.1007/s00220-009-0756-x.  Google Scholar

[17]

Bartlomiej Dyda and Moritz Kassmann, Comparability and regularity estimates for symmetric nonlocal dirichlet forms,, preprint, ().   Google Scholar

[18]

Susan Friedlander and Vlad Vicol, Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 283.  doi: 10.1016/j.anihpc.2011.01.002.  Google Scholar

[19]

Giambattista Giacomin, Joel L. Lebowitz and Errico Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems,, in, 64 (1999), 107.   Google Scholar

[20]

Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing,, Multiscale Model. Simul., 7 (2008), 1005.  doi: 10.1137/070698592.  Google Scholar

[21]

Niels Jacob, Alexander Potrykus and Jiang-Lun Wu, Solving a non-linear stochastic pseudo-differential equation of Burgers type,, Stochastic Process. Appl., 120 (2010), 2447.  doi: 10.1016/j.spa.2010.08.007.  Google Scholar

[22]

Moritz Kassmann, A priori estimates for integro-differential operators with measurable kernels,, Calc. Var. Partial Differential Equations, 34 (2009), 1.  doi: 10.1007/s00526-008-0173-6.  Google Scholar

[23]

A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2010), 58.  doi: 10.1007/s10958-010-9842-z.  Google Scholar

[24]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Math., 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[25]

Takashi Komatsu, Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms,, Osaka J. Math., 25 (1988), 697.   Google Scholar

[26]

Takashi Komatsu, Uniform estimates for fundamental solutions associated with non-local Dirichlet forms,, Osaka J. Math., 32 (1995), 833.   Google Scholar

[27]

Hitoshi Kumano-go, "Pseudodifferential Operators,", MIT Press, (1981).   Google Scholar

[28]

Yifei Lou, Xiaoqun Zhang, Stanley Osher and Andrea Bertozzi, Image recovery via nonlocal operators,, J. Sci. Comput., 42 (2010), 185.  doi: 10.1007/s10915-009-9320-2.  Google Scholar

[29]

Changxing Miao and Liutang Xue, On the regularity of a class of generalized quasi-geostrophic equations,, J. Differential Equations, 251 (2011), 2789.  doi: 10.1016/j.jde.2011.04.018.  Google Scholar

[30]

Russell W. Schwab, Periodic homogenization for nonlinear integro-differential equations,, SIAM J. Math. Anal., 42 (2010), 2652.  doi: 10.1137/080737897.  Google Scholar

[31]

Luis Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55 (2006), 1155.  doi: 10.1512/iumj.2006.55.2706.  Google Scholar

[32]

Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[33]

Luis Silvestre, Hölder estimates for advection fractional-diffusion equations,, preprint, ().   Google Scholar

[34]

Luis Silvestre, On the differentiability of the solution to an equation with drift and fractional diffusion,, preprint, ().   Google Scholar

[35]

Elias M. Stein, "Harmonic Analysis,", Princeton University Press, (1993).   Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[5]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[10]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[11]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[13]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[14]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[15]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[16]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[17]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[18]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[19]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[20]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]