-
Previous Article
Formal Poincaré-Dulac renormalization for holomorphic germs
- DCDS Home
- This Issue
- Next Article
Persistence of Hölder continuity for non-local integro-differential equations
1. | Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712, United States |
References:
[1] |
Martin T. Barlow, Richard F. Bass, Zhen-Qing Chen and Moritz Kassmann, Non-local Dirichlet forms and symmetric jump processes,, Trans. Amer. Math. Soc., 361 (2009), 1963.
doi: 10.1090/S0002-9947-08-04544-3. |
[2] |
Richard F. Bass and David A. Levin, Transition probabilities for symmetric jump processes,, Trans. Amer. Math. Soc., 354 (2002), 2933.
doi: 10.1090/S0002-9947-02-02998-7. |
[3] |
P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert,, Ann. Inst. Fourier (Grenoble), 22 (1972), 311.
|
[4] |
Luis Caffarelli, Chi Hin Chan and Alexis Vasseur, Regularity theory for parabolic nonlinear integral operators,, J. Amer. Math. Soc., 24 (2011), 849.
doi: 10.1090/S0894-0347-2011-00698-X. |
[5] |
Luis Caffarelli and Alessio Figalli, Regularity of solutions to the parabolic fractional obstacle problem,, preprint, (). Google Scholar |
[6] |
Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.
doi: 10.1002/cpa.20274. |
[7] |
Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903.
doi: 10.4007/annals.2010.171.1903. |
[8] |
Dongho Chae, Peter Constantin and Jiahong Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations,, Arch. Ration. Mech. Anal., 202 (2011), 35.
doi: 10.1007/s00205-011-0411-5. |
[9] |
Zhen-Qing Chen, Panki Kim and Takashi Kumagai, Global heat kernel estimates for symmetric jump processes,, Trans. Amer. Math. Soc., 363 (2011), 5021.
doi: 10.1090/S0002-9947-2011-05408-5. |
[10] |
Peter Constantin, Gautam Iyer and Jiahong Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation,, Indiana Univ. Math. J., 57 (2008), 2681.
doi: 10.1512/iumj.2008.57.3629. |
[11] |
Peter Constantin and Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications,, Geom. Funct. Anal., 22 (2012), 1289.
doi: 10.1007/s00039-012-0172-9. |
[12] |
Peter Constantin and Jiahong Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1103.
doi: 10.1016/j.anihpc.2007.10.001. |
[13] |
Peter Constantin and Jiahong Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 159.
doi: 10.1016/j.anihpc.2007.10.002. |
[14] |
Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.
doi: 10.1007/s00220-004-1055-1. |
[15] |
Michael Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation,, Geom. Funct. Anal., 21 (2011), 1.
doi: 10.1007/s00039-011-0108-9. |
[16] |
Hongjie Dong and Nataša Pavlović, Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces,, Comm. Math. Phys., 290 (2009), 801.
doi: 10.1007/s00220-009-0756-x. |
[17] |
Bartlomiej Dyda and Moritz Kassmann, Comparability and regularity estimates for symmetric nonlocal dirichlet forms,, preprint, (). Google Scholar |
[18] |
Susan Friedlander and Vlad Vicol, Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 283.
doi: 10.1016/j.anihpc.2011.01.002. |
[19] |
Giambattista Giacomin, Joel L. Lebowitz and Errico Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems,, in, 64 (1999), 107.
|
[20] |
Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing,, Multiscale Model. Simul., 7 (2008), 1005.
doi: 10.1137/070698592. |
[21] |
Niels Jacob, Alexander Potrykus and Jiang-Lun Wu, Solving a non-linear stochastic pseudo-differential equation of Burgers type,, Stochastic Process. Appl., 120 (2010), 2447.
doi: 10.1016/j.spa.2010.08.007. |
[22] |
Moritz Kassmann, A priori estimates for integro-differential operators with measurable kernels,, Calc. Var. Partial Differential Equations, 34 (2009), 1.
doi: 10.1007/s00526-008-0173-6. |
[23] |
A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2010), 58.
doi: 10.1007/s10958-010-9842-z. |
[24] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Math., 167 (2007), 445.
doi: 10.1007/s00222-006-0020-3. |
[25] |
Takashi Komatsu, Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms,, Osaka J. Math., 25 (1988), 697.
|
[26] |
Takashi Komatsu, Uniform estimates for fundamental solutions associated with non-local Dirichlet forms,, Osaka J. Math., 32 (1995), 833.
|
[27] |
Hitoshi Kumano-go, "Pseudodifferential Operators,", MIT Press, (1981).
|
[28] |
Yifei Lou, Xiaoqun Zhang, Stanley Osher and Andrea Bertozzi, Image recovery via nonlocal operators,, J. Sci. Comput., 42 (2010), 185.
doi: 10.1007/s10915-009-9320-2. |
[29] |
Changxing Miao and Liutang Xue, On the regularity of a class of generalized quasi-geostrophic equations,, J. Differential Equations, 251 (2011), 2789.
doi: 10.1016/j.jde.2011.04.018. |
[30] |
Russell W. Schwab, Periodic homogenization for nonlinear integro-differential equations,, SIAM J. Math. Anal., 42 (2010), 2652.
doi: 10.1137/080737897. |
[31] |
Luis Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55 (2006), 1155.
doi: 10.1512/iumj.2006.55.2706. |
[32] |
Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.
doi: 10.1002/cpa.20153. |
[33] |
Luis Silvestre, Hölder estimates for advection fractional-diffusion equations,, preprint, (). Google Scholar |
[34] |
Luis Silvestre, On the differentiability of the solution to an equation with drift and fractional diffusion,, preprint, (). Google Scholar |
[35] |
Elias M. Stein, "Harmonic Analysis,", Princeton University Press, (1993).
|
show all references
References:
[1] |
Martin T. Barlow, Richard F. Bass, Zhen-Qing Chen and Moritz Kassmann, Non-local Dirichlet forms and symmetric jump processes,, Trans. Amer. Math. Soc., 361 (2009), 1963.
doi: 10.1090/S0002-9947-08-04544-3. |
[2] |
Richard F. Bass and David A. Levin, Transition probabilities for symmetric jump processes,, Trans. Amer. Math. Soc., 354 (2002), 2933.
doi: 10.1090/S0002-9947-02-02998-7. |
[3] |
P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert,, Ann. Inst. Fourier (Grenoble), 22 (1972), 311.
|
[4] |
Luis Caffarelli, Chi Hin Chan and Alexis Vasseur, Regularity theory for parabolic nonlinear integral operators,, J. Amer. Math. Soc., 24 (2011), 849.
doi: 10.1090/S0894-0347-2011-00698-X. |
[5] |
Luis Caffarelli and Alessio Figalli, Regularity of solutions to the parabolic fractional obstacle problem,, preprint, (). Google Scholar |
[6] |
Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.
doi: 10.1002/cpa.20274. |
[7] |
Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math. (2), 171 (2010), 1903.
doi: 10.4007/annals.2010.171.1903. |
[8] |
Dongho Chae, Peter Constantin and Jiahong Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations,, Arch. Ration. Mech. Anal., 202 (2011), 35.
doi: 10.1007/s00205-011-0411-5. |
[9] |
Zhen-Qing Chen, Panki Kim and Takashi Kumagai, Global heat kernel estimates for symmetric jump processes,, Trans. Amer. Math. Soc., 363 (2011), 5021.
doi: 10.1090/S0002-9947-2011-05408-5. |
[10] |
Peter Constantin, Gautam Iyer and Jiahong Wu, Global regularity for a modified critical dissipative quasi-geostrophic equation,, Indiana Univ. Math. J., 57 (2008), 2681.
doi: 10.1512/iumj.2008.57.3629. |
[11] |
Peter Constantin and Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications,, Geom. Funct. Anal., 22 (2012), 1289.
doi: 10.1007/s00039-012-0172-9. |
[12] |
Peter Constantin and Jiahong Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1103.
doi: 10.1016/j.anihpc.2007.10.001. |
[13] |
Peter Constantin and Jiahong Wu, Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 159.
doi: 10.1016/j.anihpc.2007.10.002. |
[14] |
Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.
doi: 10.1007/s00220-004-1055-1. |
[15] |
Michael Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation,, Geom. Funct. Anal., 21 (2011), 1.
doi: 10.1007/s00039-011-0108-9. |
[16] |
Hongjie Dong and Nataša Pavlović, Regularity criteria for the dissipative quasi-geostrophic equations in Hölder spaces,, Comm. Math. Phys., 290 (2009), 801.
doi: 10.1007/s00220-009-0756-x. |
[17] |
Bartlomiej Dyda and Moritz Kassmann, Comparability and regularity estimates for symmetric nonlocal dirichlet forms,, preprint, (). Google Scholar |
[18] |
Susan Friedlander and Vlad Vicol, Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 283.
doi: 10.1016/j.anihpc.2011.01.002. |
[19] |
Giambattista Giacomin, Joel L. Lebowitz and Errico Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems,, in, 64 (1999), 107.
|
[20] |
Guy Gilboa and Stanley Osher, Nonlocal operators with applications to image processing,, Multiscale Model. Simul., 7 (2008), 1005.
doi: 10.1137/070698592. |
[21] |
Niels Jacob, Alexander Potrykus and Jiang-Lun Wu, Solving a non-linear stochastic pseudo-differential equation of Burgers type,, Stochastic Process. Appl., 120 (2010), 2447.
doi: 10.1016/j.spa.2010.08.007. |
[22] |
Moritz Kassmann, A priori estimates for integro-differential operators with measurable kernels,, Calc. Var. Partial Differential Equations, 34 (2009), 1.
doi: 10.1007/s00526-008-0173-6. |
[23] |
A. Kiselev and F. Nazarov, A variation on a theme of Caffarelli and Vasseur,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 370 (2010), 58.
doi: 10.1007/s10958-010-9842-z. |
[24] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Math., 167 (2007), 445.
doi: 10.1007/s00222-006-0020-3. |
[25] |
Takashi Komatsu, Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms,, Osaka J. Math., 25 (1988), 697.
|
[26] |
Takashi Komatsu, Uniform estimates for fundamental solutions associated with non-local Dirichlet forms,, Osaka J. Math., 32 (1995), 833.
|
[27] |
Hitoshi Kumano-go, "Pseudodifferential Operators,", MIT Press, (1981).
|
[28] |
Yifei Lou, Xiaoqun Zhang, Stanley Osher and Andrea Bertozzi, Image recovery via nonlocal operators,, J. Sci. Comput., 42 (2010), 185.
doi: 10.1007/s10915-009-9320-2. |
[29] |
Changxing Miao and Liutang Xue, On the regularity of a class of generalized quasi-geostrophic equations,, J. Differential Equations, 251 (2011), 2789.
doi: 10.1016/j.jde.2011.04.018. |
[30] |
Russell W. Schwab, Periodic homogenization for nonlinear integro-differential equations,, SIAM J. Math. Anal., 42 (2010), 2652.
doi: 10.1137/080737897. |
[31] |
Luis Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55 (2006), 1155.
doi: 10.1512/iumj.2006.55.2706. |
[32] |
Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2007), 67.
doi: 10.1002/cpa.20153. |
[33] |
Luis Silvestre, Hölder estimates for advection fractional-diffusion equations,, preprint, (). Google Scholar |
[34] |
Luis Silvestre, On the differentiability of the solution to an equation with drift and fractional diffusion,, preprint, (). Google Scholar |
[35] |
Elias M. Stein, "Harmonic Analysis,", Princeton University Press, (1993).
|
[1] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[2] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[3] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[4] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[5] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[6] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[7] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[8] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[9] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[10] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[11] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[12] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[13] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[14] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[15] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[16] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[17] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[18] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[19] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[20] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]