May  2013, 33(5): 1809-1818. doi: 10.3934/dcds.2013.33.1809

Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation

1. 

Laboratoire de Mathématiques Appliquées aux Systémes, École Centrale Paris Grande voie des Vignes, 92295 Châtenay-Malabry Cedex, France

2. 

UMR 6086 CNRS. Laboratoire de Mathématiques - Université de Poitiers - SP2MI, Boulevard Marie et Pierre Curie, Téléport 2, BP30179 - 86962 Futuroscope Chasseneuil Cedex

Received  December 2011 Revised  February 2012 Published  December 2012

It is known that the very weak solution of $-∫_Ω u\Deltaφ dx=∫_Ω fφ dx$, $∀φ∈ C^2(\overline{Ω}),$ $φ=0$ on $∂Ω$, $u\in L^1(Ω)$ has its gradient in $Ł^1(Ω)$ whenever $f∈ L^1(Ω;δ(1+|Lnδ|))$, $δ(x)$ being the distance of $x∈Ω$ to the boundary. In this paper, we show that if $f≥0$ is not in this weighted space $L^1(Ω;δ(1+|Lnδ|))$, then its gradient blows up in $L(\log L)$ at least. Moreover, we show that there exist a domain $Ω$ of class $C^\infty$ and a function $f∈ L^1_+(Ω,δ)$ such that the associated very weak solution has its gradient being non integrable on $Ω$.
Citation: Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809
References:
[1]

Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988. xiv+469 pp.  Google Scholar

[2]

Rev. Mat. Iberoamericana, 16 (2000), 477-513. doi: 10.4171/RMI/281.  Google Scholar

[3]

[Functional analysis] Théorie et applications. [Theory and applications] Collection Mathématiques Appliquées. pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree] Masson, Paris, 1983. xiv+234 pp. Google Scholar

[4]

Adv. Differential Equations, 1 (1996), 73-90.  Google Scholar

[5]

J. Funct. Anal., 257 (2009), 807-831. doi: 10.1016/j.jfa.2009.03.002.  Google Scholar

[6]

Discrete Contin. Dyn. Syst., 27 (2010), 1037-1058. doi: 10.3934/dcds.2010.27.1037.  Google Scholar

[7]

(French) [Functional spaces] Utilisation dans la résolution des équations aux dérivées partielles. [Application to the solution of partial differential equations] Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)] EDP Sciences, Les Ulis; CNRS Éditions, Paris, 2007. xii+467 pp. Google Scholar

[8]

Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp.  Google Scholar

[9]

Differential and Integral Equations, 24 (2011), 1125-1140.  Google Scholar

[10]

(French. French summary) [Relative rearrangement] Un instrument d'estimations dans les problèmes aux limites. [An estimation tool for limit problems] Mathématiques & Applications (Berlin) [Mathematics & Applications], 64. Springer, Berlin, 2008. xvi+293 pp. Google Scholar

[11]

[Functional analysis applied to partial differential equations] Mathématiques. [Mathematics] Presses Universitaires de France, Paris, 1999. 232 pp. Google Scholar

show all references

References:
[1]

Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988. xiv+469 pp.  Google Scholar

[2]

Rev. Mat. Iberoamericana, 16 (2000), 477-513. doi: 10.4171/RMI/281.  Google Scholar

[3]

[Functional analysis] Théorie et applications. [Theory and applications] Collection Mathématiques Appliquées. pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree] Masson, Paris, 1983. xiv+234 pp. Google Scholar

[4]

Adv. Differential Equations, 1 (1996), 73-90.  Google Scholar

[5]

J. Funct. Anal., 257 (2009), 807-831. doi: 10.1016/j.jfa.2009.03.002.  Google Scholar

[6]

Discrete Contin. Dyn. Syst., 27 (2010), 1037-1058. doi: 10.3934/dcds.2010.27.1037.  Google Scholar

[7]

(French) [Functional spaces] Utilisation dans la résolution des équations aux dérivées partielles. [Application to the solution of partial differential equations] Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)] EDP Sciences, Les Ulis; CNRS Éditions, Paris, 2007. xii+467 pp. Google Scholar

[8]

Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517 pp.  Google Scholar

[9]

Differential and Integral Equations, 24 (2011), 1125-1140.  Google Scholar

[10]

(French. French summary) [Relative rearrangement] Un instrument d'estimations dans les problèmes aux limites. [An estimation tool for limit problems] Mathématiques & Applications (Berlin) [Mathematics & Applications], 64. Springer, Berlin, 2008. xvi+293 pp. Google Scholar

[11]

[Functional analysis applied to partial differential equations] Mathématiques. [Mathematics] Presses Universitaires de France, Paris, 1999. 232 pp. Google Scholar

[1]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[2]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[3]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[4]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021043

[5]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[6]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[7]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[8]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[9]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[10]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[11]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[12]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[13]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036

[14]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[15]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[16]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[17]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[18]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[19]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[20]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]