May  2013, 33(5): 1835-1856. doi: 10.3934/dcds.2013.33.1835

Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance

1. 

Department of Mathematics - University of Torino, Via Carlo Alberto, 10 - 10123 Torino, Italy, Italy

2. 

School of Mathematical Sciences, Capital Normal University, Beijing 100048

Received  January 2012 Revised  July 2012 Published  December 2012

In this paper we deal with the existence of unbounded orbits of the map $$ \left\{\begin{array}{l} θ_1= θ+\frac{1}{ρ} [u(θ)-l_1(ρ)]+h_1(ρ, θ), ρ_1=ρ-u'(θ)+l_2(ρ)+h_2(ρ, θ), \end{array} \right. $$ where $\mu$ is continuous and $2\pi$-periodic, $l_1$, $l_2$ are continuous and bounded, $h_1(\rho, \theta)=o(\rho^{-1})$, $h_2(\rho, \theta)=o(1)$, for $\rho\to+\infty$. We prove that every orbit of the map tends to infinity in the future or in the past for $\rho$ large enough provided that $$[\liminf_{\rho\to+\infty}l_1(\rho), \limsup_{\rho\to+\infty}l_1(\rho)]\cap Range(\mu)=\emptyset$$ and other conditions hold. On the basis of this conclusion, we prove that the system $ Jz'=\nabla H(z)+f(z)+p(t)$ has unbounded solutions when $H$ is positively homogeneous of degree 2 and positive. Meanwhile, we also obtain the existence of $2\pi$-periodic solutions of this system.
Citation: Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835
References:
[1]

J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.  doi: 10.1006/jdeq.1997.3367.  Google Scholar

[2]

D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance,, Differential Integral Equations, 15 (2002), 1139.   Google Scholar

[3]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance,, Discrete Contin. Dynam. Systems, 8 (2002), 907.  doi: 10.3934/dcds.2002.8.907.  Google Scholar

[4]

A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance,, Proc. Edinburgh Math. Soc. A, 138 (2008), 15.  doi: 10.1017/S030821050600062X.  Google Scholar

[5]

A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, J. London Math. Soc., 68 (2003), 119.  doi: 10.1112/S0024610703004459.  Google Scholar

[6]

N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.   Google Scholar

[7]

C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators,, J. Differential Equations, 147 (1998), 58.  doi: 10.1006/jdeq.1998.3441.  Google Scholar

[8]

C. Fabry and A. Fonda, Unbounded motions of perturbed isochronous hamiltonian systems at resonance,, Adv. Nonlinear Stud., 5 (2005), 351.   Google Scholar

[9]

C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance,, Nonlinearity, 13 (2000), 493.  doi: 10.1088/0951-7715/13/3/302.  Google Scholar

[10]

A. Fonda, Positively homogeneous Hamiltonian systems in the plane,, J. Differential Equations, 200 (2004), 162.  doi: 10.1016/j.jde.2004.02.001.  Google Scholar

[11]

A. Fonda and J. Mawhin, Planar differential systems at resonance,, Adv. Differential Equations, 11 (2006), 1111.   Google Scholar

[12]

N. G. Lloyd, "Degree Theory,", Cambridge University Press, (1978).   Google Scholar

[13]

A. I. Luré, Some nonlinear problems of the theory of automatic regulation (Russian),, Gostekhizdat, (1951).   Google Scholar

[14]

D. B. Qian, On resonance phenomena for asymmetric weakly nonlinear oscillator,, Sci. China Ser. A, 45 (2002), 214.   Google Scholar

[15]

Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives,, Discrete Contin. Dynam. Systems, 9 (2003), 751.  doi: 10.3934/dcds.2003.9.751.  Google Scholar

[16]

Z. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, Sci. China Ser. A, 8 (2007), 1205.  doi: 10.1007/s11425-007-0070-z.  Google Scholar

[17]

X. Yang, Unboundedness of the large solutions of someasymmetric oscillators at resonance,, Math. Nachr., 276 (2004), 89.  doi: 10.1002/mana.200310215.  Google Scholar

show all references

References:
[1]

J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.  doi: 10.1006/jdeq.1997.3367.  Google Scholar

[2]

D. Bonheure and C. Fabry, Unbounded solutions of forced isochronous oscillators at resonance,, Differential Integral Equations, 15 (2002), 1139.   Google Scholar

[3]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillator at resonance,, Discrete Contin. Dynam. Systems, 8 (2002), 907.  doi: 10.3934/dcds.2002.8.907.  Google Scholar

[4]

A. Capietto, W. Dambrosio and Z. Wang, Coexistence of unbounded and periodic solutions to perturbed damped isochronous oscillators at resonance,, Proc. Edinburgh Math. Soc. A, 138 (2008), 15.  doi: 10.1017/S030821050600062X.  Google Scholar

[5]

A. Capietto and Z. Wang, Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, J. London Math. Soc., 68 (2003), 119.  doi: 10.1112/S0024610703004459.  Google Scholar

[6]

N. Dancer, Boundary value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.   Google Scholar

[7]

C. Fabry and A. Fonda, Nonlinear resonance in asymmetric oscillators,, J. Differential Equations, 147 (1998), 58.  doi: 10.1006/jdeq.1998.3441.  Google Scholar

[8]

C. Fabry and A. Fonda, Unbounded motions of perturbed isochronous hamiltonian systems at resonance,, Adv. Nonlinear Stud., 5 (2005), 351.   Google Scholar

[9]

C. Fabry and J. Mawhin, Oscillations of a forced asymmetric oscillators at resonance,, Nonlinearity, 13 (2000), 493.  doi: 10.1088/0951-7715/13/3/302.  Google Scholar

[10]

A. Fonda, Positively homogeneous Hamiltonian systems in the plane,, J. Differential Equations, 200 (2004), 162.  doi: 10.1016/j.jde.2004.02.001.  Google Scholar

[11]

A. Fonda and J. Mawhin, Planar differential systems at resonance,, Adv. Differential Equations, 11 (2006), 1111.   Google Scholar

[12]

N. G. Lloyd, "Degree Theory,", Cambridge University Press, (1978).   Google Scholar

[13]

A. I. Luré, Some nonlinear problems of the theory of automatic regulation (Russian),, Gostekhizdat, (1951).   Google Scholar

[14]

D. B. Qian, On resonance phenomena for asymmetric weakly nonlinear oscillator,, Sci. China Ser. A, 45 (2002), 214.   Google Scholar

[15]

Z. Wang, Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives,, Discrete Contin. Dynam. Systems, 9 (2003), 751.  doi: 10.3934/dcds.2003.9.751.  Google Scholar

[16]

Z. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, Sci. China Ser. A, 8 (2007), 1205.  doi: 10.1007/s11425-007-0070-z.  Google Scholar

[17]

X. Yang, Unboundedness of the large solutions of someasymmetric oscillators at resonance,, Math. Nachr., 276 (2004), 89.  doi: 10.1002/mana.200310215.  Google Scholar

[1]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[2]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[3]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[4]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[5]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[6]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[7]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[8]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[9]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[10]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[11]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[12]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[13]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[14]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[18]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[19]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[20]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (2)

[Back to Top]