• Previous Article
    Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance
  • DCDS Home
  • This Issue
  • Next Article
    No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$
May  2013, 33(5): 1857-1882. doi: 10.3934/dcds.2013.33.1857

Almost periodic and almost automorphic solutions of linear differential equations

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

State University of Moldova, Department of Mathematics and Informatics, A. Mateevich Street 60, MD–2009 Chişinău

Received  December 2011 Revised  May 2012 Published  December 2012

We analyze the existence of almost periodic (respectively, almost automorphic, recurrent) solutions of a linear non-homogeneous differential (or difference) equation in a Banach space, with almost periodic (respectively, almost automorphic, recurrent) coefficients. Under some conditions we prove that one of the following alternatives is fulfilled:
  (i) There exists a complete trajectory of the corresponding homogeneous equation with constant positive norm;
  (ii) The trivial solution of the homogeneous equation is uniformly asymptotically stable.
If the second alternative holds, then the non-homogeneous equation with almost periodic (respectively, almost automorphic, recurrent) coefficients possesses a unique almost periodic (respectively, almost automorphic, recurrent) solution. We investigate this problem within the framework of general linear nonautonomous dynamical systems. We apply our general results also to the cases of functional-differential equations and difference equations.
Citation: Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857
References:
[1]

B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions,, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 11.

[2]

B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence,, Bull. Sci. Math. (2), 101 (1977), 131.

[3]

S. Bochner, A new approach to almost periodicity,, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039.

[4]

N. Bourbaki, "Espaces Vectoriels Topologiques,", Hermann, (1955).

[5]

I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).

[6]

I. U. Bronsteyn, "Nonautonomous Dynamical Systems,", Kishinev, (1984).

[7]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Comm. Pure Applied Analysis, 11 (2012), 809. doi: 10.3934/cpaa.2012.11.809.

[8]

D. N. Cheban, Global attractors of infinite-dimensional dynamical systems, I,, Bulletin of Academy of Sciences of Republic of Moldova, 2 (1994), 2.

[9]

D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces,, Electronic Journal of Differential Equations, 2000 (2000), 1.

[10]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems,", Interdisciplinary Mathematical Sciences 1. River Edge, (2004). doi: 10.1142/9789812563088.

[11]

D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, Journal of Dynamics and Differential Equations, 20 (2008), 669. doi: 10.1007/s10884-008-9101-x.

[12]

P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations,, Portugaliae Mathematica, 59 (2002), 141.

[13]

J. Egawa, A characterization of almost automorphic functions,, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203.

[14]

H. Falun, Existence of almost periodic solutions for dissipative,, Ann. of Diff. Eqs., 6 (1990), 271.

[15]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).

[16]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).

[17]

P. Milnes, Almost automorphic functions and totally bounded groups,, Rocky Mountain J. Math., 7 (1977), 231.

[18]

K. Petersen, "Ergodic Theory,", Cambridge University Press. Cambridge - New York - Port Chester - Melbourn - Sydney, (1989).

[19]

R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I,, Journal of Differential Equations, 15 (1974), 429.

[20]

R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces,, Journal of Differential Equations, 113 (1994), 17. doi: 10.1006/jdeq.1994.1113.

[21]

G. R. Sell, "Topological Dynamics and Differential Equations,", Van Nostrand-Reinbold, (1971).

[22]

L. Schwartz, "Analyse Mathématique,", volume I. Hermann, (1967).

[23]

B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations,", Ştiinţa, (1972).

[24]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.

[25]

B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems,, An. Şti. Univ., 21 (1975), 57.

[26]

B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations,", Ştiinţa, (1985).

[27]

W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998).

[28]

K. S. Sibirsky, "Introduction to Topological Dynamics,", Noordhoff, (1975).

[29]

Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity,", Nauka i Tehnika. Minsk, (1986).

[30]

P. Walters, "Ergodic Theory - Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).

show all references

References:
[1]

B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions,, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 11.

[2]

B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence,, Bull. Sci. Math. (2), 101 (1977), 131.

[3]

S. Bochner, A new approach to almost periodicity,, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039.

[4]

N. Bourbaki, "Espaces Vectoriels Topologiques,", Hermann, (1955).

[5]

I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).

[6]

I. U. Bronsteyn, "Nonautonomous Dynamical Systems,", Kishinev, (1984).

[7]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Comm. Pure Applied Analysis, 11 (2012), 809. doi: 10.3934/cpaa.2012.11.809.

[8]

D. N. Cheban, Global attractors of infinite-dimensional dynamical systems, I,, Bulletin of Academy of Sciences of Republic of Moldova, 2 (1994), 2.

[9]

D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces,, Electronic Journal of Differential Equations, 2000 (2000), 1.

[10]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems,", Interdisciplinary Mathematical Sciences 1. River Edge, (2004). doi: 10.1142/9789812563088.

[11]

D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, Journal of Dynamics and Differential Equations, 20 (2008), 669. doi: 10.1007/s10884-008-9101-x.

[12]

P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations,, Portugaliae Mathematica, 59 (2002), 141.

[13]

J. Egawa, A characterization of almost automorphic functions,, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203.

[14]

H. Falun, Existence of almost periodic solutions for dissipative,, Ann. of Diff. Eqs., 6 (1990), 271.

[15]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).

[16]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).

[17]

P. Milnes, Almost automorphic functions and totally bounded groups,, Rocky Mountain J. Math., 7 (1977), 231.

[18]

K. Petersen, "Ergodic Theory,", Cambridge University Press. Cambridge - New York - Port Chester - Melbourn - Sydney, (1989).

[19]

R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I,, Journal of Differential Equations, 15 (1974), 429.

[20]

R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces,, Journal of Differential Equations, 113 (1994), 17. doi: 10.1006/jdeq.1994.1113.

[21]

G. R. Sell, "Topological Dynamics and Differential Equations,", Van Nostrand-Reinbold, (1971).

[22]

L. Schwartz, "Analyse Mathématique,", volume I. Hermann, (1967).

[23]

B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations,", Ştiinţa, (1972).

[24]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.

[25]

B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems,, An. Şti. Univ., 21 (1975), 57.

[26]

B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations,", Ştiinţa, (1985).

[27]

W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998).

[28]

K. S. Sibirsky, "Introduction to Topological Dynamics,", Noordhoff, (1975).

[29]

Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity,", Nauka i Tehnika. Minsk, (1986).

[30]

P. Walters, "Ergodic Theory - Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).

[1]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[2]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[3]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[4]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[5]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[6]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[7]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[8]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[9]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020065

[10]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[11]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[12]

Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435

[13]

Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135

[14]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1401-1414. doi: 10.3934/cpaa.2011.10.1401

[15]

Massimo Tarallo. Fredholm's alternative for a class of almost periodic linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2301-2313. doi: 10.3934/dcds.2012.32.2301

[16]

Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 569-584. doi: 10.3934/dcds.1999.5.569

[17]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[18]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

[19]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

[20]

Fanchao Kong, Juan J. Nieto. Almost periodic dynamical behaviors of the hematopoiesis model with mixed discontinuous harvesting terms. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019107

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]