• Previous Article
    No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$
  • DCDS Home
  • This Issue
  • Next Article
    Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance
May  2013, 33(5): 1857-1882. doi: 10.3934/dcds.2013.33.1857

Almost periodic and almost automorphic solutions of linear differential equations

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

State University of Moldova, Department of Mathematics and Informatics, A. Mateevich Street 60, MD–2009 Chişinău

Received  December 2011 Revised  May 2012 Published  December 2012

We analyze the existence of almost periodic (respectively, almost automorphic, recurrent) solutions of a linear non-homogeneous differential (or difference) equation in a Banach space, with almost periodic (respectively, almost automorphic, recurrent) coefficients. Under some conditions we prove that one of the following alternatives is fulfilled:
  (i) There exists a complete trajectory of the corresponding homogeneous equation with constant positive norm;
  (ii) The trivial solution of the homogeneous equation is uniformly asymptotically stable.
If the second alternative holds, then the non-homogeneous equation with almost periodic (respectively, almost automorphic, recurrent) coefficients possesses a unique almost periodic (respectively, almost automorphic, recurrent) solution. We investigate this problem within the framework of general linear nonautonomous dynamical systems. We apply our general results also to the cases of functional-differential equations and difference equations.
Citation: Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857
References:
[1]

B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions,, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 11.   Google Scholar

[2]

B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence,, Bull. Sci. Math. (2), 101 (1977), 131.   Google Scholar

[3]

S. Bochner, A new approach to almost periodicity,, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039.   Google Scholar

[4]

N. Bourbaki, "Espaces Vectoriels Topologiques,", Hermann, (1955).   Google Scholar

[5]

I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).   Google Scholar

[6]

I. U. Bronsteyn, "Nonautonomous Dynamical Systems,", Kishinev, (1984).   Google Scholar

[7]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Comm. Pure Applied Analysis, 11 (2012), 809.  doi: 10.3934/cpaa.2012.11.809.  Google Scholar

[8]

D. N. Cheban, Global attractors of infinite-dimensional dynamical systems, I,, Bulletin of Academy of Sciences of Republic of Moldova, 2 (1994), 2.   Google Scholar

[9]

D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces,, Electronic Journal of Differential Equations, 2000 (2000), 1.   Google Scholar

[10]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems,", Interdisciplinary Mathematical Sciences 1. River Edge, (2004).  doi: 10.1142/9789812563088.  Google Scholar

[11]

D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, Journal of Dynamics and Differential Equations, 20 (2008), 669.  doi: 10.1007/s10884-008-9101-x.  Google Scholar

[12]

P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations,, Portugaliae Mathematica, 59 (2002), 141.   Google Scholar

[13]

J. Egawa, A characterization of almost automorphic functions,, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203.   Google Scholar

[14]

H. Falun, Existence of almost periodic solutions for dissipative,, Ann. of Diff. Eqs., 6 (1990), 271.   Google Scholar

[15]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[16]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).   Google Scholar

[17]

P. Milnes, Almost automorphic functions and totally bounded groups,, Rocky Mountain J. Math., 7 (1977), 231.   Google Scholar

[18]

K. Petersen, "Ergodic Theory,", Cambridge University Press. Cambridge - New York - Port Chester - Melbourn - Sydney, (1989).   Google Scholar

[19]

R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I,, Journal of Differential Equations, 15 (1974), 429.   Google Scholar

[20]

R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces,, Journal of Differential Equations, 113 (1994), 17.  doi: 10.1006/jdeq.1994.1113.  Google Scholar

[21]

G. R. Sell, "Topological Dynamics and Differential Equations,", Van Nostrand-Reinbold, (1971).   Google Scholar

[22]

L. Schwartz, "Analyse Mathématique,", volume I. Hermann, (1967).   Google Scholar

[23]

B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations,", Ştiinţa, (1972).   Google Scholar

[24]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.   Google Scholar

[25]

B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems,, An. Şti. Univ., 21 (1975), 57.   Google Scholar

[26]

B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations,", Ştiinţa, (1985).   Google Scholar

[27]

W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998).   Google Scholar

[28]

K. S. Sibirsky, "Introduction to Topological Dynamics,", Noordhoff, (1975).   Google Scholar

[29]

Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity,", Nauka i Tehnika. Minsk, (1986).   Google Scholar

[30]

P. Walters, "Ergodic Theory - Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).   Google Scholar

show all references

References:
[1]

B. R. Basit, A connection between the almost periodic functions of Levitan and almost automorphic functions,, Vestnik Moskov. Univ. Ser. I Mat. Meh., 26 (1971), 11.   Google Scholar

[2]

B. R. Basit, Les fonctions abstraites presques automorphiques et presque périodiques au sens de levitan, et leurs différence,, Bull. Sci. Math. (2), 101 (1977), 131.   Google Scholar

[3]

S. Bochner, A new approach to almost periodicity,, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039.   Google Scholar

[4]

N. Bourbaki, "Espaces Vectoriels Topologiques,", Hermann, (1955).   Google Scholar

[5]

I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).   Google Scholar

[6]

I. U. Bronsteyn, "Nonautonomous Dynamical Systems,", Kishinev, (1984).   Google Scholar

[7]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Comm. Pure Applied Analysis, 11 (2012), 809.  doi: 10.3934/cpaa.2012.11.809.  Google Scholar

[8]

D. N. Cheban, Global attractors of infinite-dimensional dynamical systems, I,, Bulletin of Academy of Sciences of Republic of Moldova, 2 (1994), 2.   Google Scholar

[9]

D. N. Cheban, Uniform exponential stability of linear almost periodic systems in a Banach spaces,, Electronic Journal of Differential Equations, 2000 (2000), 1.   Google Scholar

[10]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems,", Interdisciplinary Mathematical Sciences 1. River Edge, (2004).  doi: 10.1142/9789812563088.  Google Scholar

[11]

D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, Journal of Dynamics and Differential Equations, 20 (2008), 669.  doi: 10.1007/s10884-008-9101-x.  Google Scholar

[12]

P. Cieutat and A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations,, Portugaliae Mathematica, 59 (2002), 141.   Google Scholar

[13]

J. Egawa, A characterization of almost automorphic functions,, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 203.   Google Scholar

[14]

H. Falun, Existence of almost periodic solutions for dissipative,, Ann. of Diff. Eqs., 6 (1990), 271.   Google Scholar

[15]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[16]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).   Google Scholar

[17]

P. Milnes, Almost automorphic functions and totally bounded groups,, Rocky Mountain J. Math., 7 (1977), 231.   Google Scholar

[18]

K. Petersen, "Ergodic Theory,", Cambridge University Press. Cambridge - New York - Port Chester - Melbourn - Sydney, (1989).   Google Scholar

[19]

R. J. Sacker and G. R. Sell, Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I,, Journal of Differential Equations, 15 (1974), 429.   Google Scholar

[20]

R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in banach spaces,, Journal of Differential Equations, 113 (1994), 17.  doi: 10.1006/jdeq.1994.1113.  Google Scholar

[21]

G. R. Sell, "Topological Dynamics and Differential Equations,", Van Nostrand-Reinbold, (1971).   Google Scholar

[22]

L. Schwartz, "Analyse Mathématique,", volume I. Hermann, (1967).   Google Scholar

[23]

B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations,", Ştiinţa, (1972).   Google Scholar

[24]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.   Google Scholar

[25]

B. A. Shcherbakov, The nature of the recurrence of the solutions of linear differential systems,, An. Şti. Univ., 21 (1975), 57.   Google Scholar

[26]

B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations,", Ştiinţa, (1985).   Google Scholar

[27]

W. Shen W. and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998).   Google Scholar

[28]

K. S. Sibirsky, "Introduction to Topological Dynamics,", Noordhoff, (1975).   Google Scholar

[29]

Y. V. Trubnikov and A. I. Perov, "The Differential Equations with Monotone Nonlinearity,", Nauka i Tehnika. Minsk, (1986).   Google Scholar

[30]

P. Walters, "Ergodic Theory - Introductory Lectures,", Lecture Notes in Mathematics, 458 (1975).   Google Scholar

[1]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[2]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[3]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[4]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[5]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[6]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[9]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[15]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[17]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[18]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[20]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]