May  2013, 33(5): 1883-1890. doi: 10.3934/dcds.2013.33.1883

No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$

1. 

Department of Mathematics, Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, United States

2. 

Department of Mathematics, Queens College, Flushing, NY 11367, United States

3. 

Department of Mathematics, Nanjing University, Nanjing 210090, China

Received  September 2011 Revised  August 2012 Published  December 2012

Consider the family $f_{\lambda, \gamma}(z) = \lambda e^{iz}+\gamma e^{-iz}$ where $\lambda$ and $\gamma$ are non-zero complex numbers. It contains the sine family $\lambda \sin z$ and is a natural extension of the sine family. We give a direct proof of that the escaping set $I_{\lambda, \gamma}$ of $f_{\lambda, \gamma}$ supports no $f_{\lambda,\gamma}$-invariant line fields.
Citation: Tao Chen, Yunping Jiang, Gaofei Zhang. No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1883-1890. doi: 10.3934/dcds.2013.33.1883
References:
[1]

Math. Ann., 352 (2012), 27-54.  Google Scholar

[2]

Springer-Verlag, New York 1991.  Google Scholar

[3]

Fund. Math., 159 (1999), 269-287.  Google Scholar

[4]

Ann. Inst. Fourier (Grenoble), 42 (1992), 989-1020.  Google Scholar

[5]

Trans. Amer. Math. Soc., 300 (1987), 329-342.  Google Scholar

[6]

Ann. of Math. Studies, Vol. 135, 1994.  Google Scholar

[7]

Acta Mathematica, 180 (1998), 247-292.  Google Scholar

[8]

Ergodic Theory and Dynamical Systems, 31 (2011), 1325-1344. doi: 10.1017/S0143385710000386.  Google Scholar

[9]

Acta Mathematica, 203 (2009), 235-267.  Google Scholar

[10]

Trans Amer. Math. Soc., 363 (2011), 203-228. doi: 10.1090/S0002-9947-2010-05125-6.  Google Scholar

[11]

Duke Math. J., 136 (2007), 343-356. doi: 10.1215/S0012-7094-07-13625-1.  Google Scholar

[12]

Proc. Amer. Math. Soc., 136 (2008), 1251-1259.  Google Scholar

[13]

Israel J. Math., 165 (2008), 233-252.  Google Scholar

[14]

Illinois J. Math., 49 (2005), 1171-1179.  Google Scholar

show all references

References:
[1]

Math. Ann., 352 (2012), 27-54.  Google Scholar

[2]

Springer-Verlag, New York 1991.  Google Scholar

[3]

Fund. Math., 159 (1999), 269-287.  Google Scholar

[4]

Ann. Inst. Fourier (Grenoble), 42 (1992), 989-1020.  Google Scholar

[5]

Trans. Amer. Math. Soc., 300 (1987), 329-342.  Google Scholar

[6]

Ann. of Math. Studies, Vol. 135, 1994.  Google Scholar

[7]

Acta Mathematica, 180 (1998), 247-292.  Google Scholar

[8]

Ergodic Theory and Dynamical Systems, 31 (2011), 1325-1344. doi: 10.1017/S0143385710000386.  Google Scholar

[9]

Acta Mathematica, 203 (2009), 235-267.  Google Scholar

[10]

Trans Amer. Math. Soc., 363 (2011), 203-228. doi: 10.1090/S0002-9947-2010-05125-6.  Google Scholar

[11]

Duke Math. J., 136 (2007), 343-356. doi: 10.1215/S0012-7094-07-13625-1.  Google Scholar

[12]

Proc. Amer. Math. Soc., 136 (2008), 1251-1259.  Google Scholar

[13]

Israel J. Math., 165 (2008), 233-252.  Google Scholar

[14]

Illinois J. Math., 49 (2005), 1171-1179.  Google Scholar

[1]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[2]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[3]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021050

[4]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[5]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[6]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[7]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003

[8]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[9]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[10]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[11]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[12]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021012

[13]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

[14]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[15]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[16]

Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021024

[17]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[18]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]