\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$

Abstract Related Papers Cited by
  • Consider the family $f_{\lambda, \gamma}(z) = \lambda e^{iz}+\gamma e^{-iz}$ where $\lambda$ and $\gamma$ are non-zero complex numbers. It contains the sine family $\lambda \sin z$ and is a natural extension of the sine family. We give a direct proof of that the escaping set $I_{\lambda, \gamma}$ of $f_{\lambda, \gamma}$ supports no $f_{\lambda,\gamma}$-invariant line fields.
    Mathematics Subject Classification: Primary: 37F10; Secondary: 37F15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Aspenberg and W. Bergweiler, Entire functions with Julia sets of positive measure, Math. Ann., 352 (2012), 27-54.

    [2]

    L. Carleson and T. Gamelin, "Complex Dynamics," Springer-Verlag, New York 1991.

    [3]

    B. Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of $\lambda e^z$ and $\lambda\sin z$, Fund. Math., 159 (1999), 269-287.

    [4]

    A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble), 42 (1992), 989-1020.

    [5]

    C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc., 300 (1987), 329-342.

    [6]

    C. McMullen, "Complex Dynamics and Renormalization," Ann. of Math. Studies, Vol. 135, 1994.

    [7]

    C. McMullen, Self-similarity of Siegel disk and Hausdorff dimension of Julia set, Acta Mathematica, 180 (1998), 247-292.

    [8]

    W. De Melo, P. Salomão, and E. Vargas, A full family of multimodel family of mappings on the circle, Ergodic Theory and Dynamical Systems, 31 (2011), 1325-1344.doi: 10.1017/S0143385710000386.

    [9]

    L. Rempe, Rigidity of escaping dynamics for transdental entire functions, Acta Mathematica, 203 (2009), 235-267.

    [10]

    L. Rempe and S. van Strien, Absence of line fields and Mane's theorem for non-recurrent transcendental functions, Trans Amer. Math. Soc., 363 (2011), 203-228.doi: 10.1090/S0002-9947-2010-05125-6.

    [11]

    D. Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox, Duke Math. J., 136 (2007), 343-356.doi: 10.1215/S0012-7094-07-13625-1.

    [12]

    H. Schubert, Area of Fatou sets of trigonometric functions, Proc. Amer. Math. Soc., 136 (2008), 1251-1259.

    [13]

    G. Zhang, On the non-escaping set of $e^{2\pi i\theta}sin(z)$, Israel J. Math., 165 (2008), 233-252.

    [14]

    G. Zhang, On the dynamics of $e^{2\pi i\theta}sin(z)$, Illinois J. Math., 49 (2005), 1171-1179.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return