-
Previous Article
Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition
- DCDS Home
- This Issue
-
Next Article
No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$
Continuous limit and the moments system for the globally coupled phase oscillators
1. | Institute of Mathematics for Industry, Kyushu University, Fukuoka, 819-0395, Japan |
References:
[1] |
Rev. Mod. Phys., 77 (2005), 137-185. Google Scholar |
[2] |
Hafner Publishing Co., New York, (1965), x+253 pp. |
[3] |
Phys. D, 143 (2000), 21-55.
doi: 10.1016/S0167-2789(00)00095-6. |
[4] |
Chaos, 21 (2011), 043103.
doi: 10.1063/1.3647317. |
[5] |
Physica D, 238 (2009), 1068-1081.
doi: 10.1016/j.physd.2009.03.005. |
[6] |
Phys. D, 125 (1999), 1-46.
doi: 10.1016/S0167-2789(98)00235-8. |
[7] |
J. Statist. Phys., 60 (1990), 753-800.
doi: 10.1007/BF01025993. |
[8] |
Phys. D, 91 (1996), 24-66.
doi: 10.1016/0167-2789(95)00260-X. |
[9] |
Appl. Math. Comput., 88 (1997), 39-51.
doi: 10.1016/S0096-3003(96)00305-0. |
[10] |
International Symposium on Mathematical Problems in Theoretical Physics, 420-422. Lecture Notes in Phys., 39. Springer, Berlin, (1975). |
[11] |
Springer Series in Synergetics, 19. Springer-Verlag, Berlin, 1984
doi: 10.1007/978-3-642-69689-3. |
[12] |
Phys. Rev. Lett., 93 (2004), 084102. Google Scholar |
[13] |
Int. J. of Bif. and Chaos, 15 (2005), 3457-3466.
doi: 10.1142/S0218127405014155. |
[14] |
Phys. Rev. E, 79 (2009), 026204.
doi: 10.1103/PhysRevE.79.026204. |
[15] |
J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x. |
[16] |
J. Phys. A, 30 (1997), 8095-8103.
doi: 10.1088/0305-4470/30/23/010. |
[17] |
Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743. |
[18] |
American Mathematical Society, New York, 1943. |
[19] |
Adv. Math., 137 (1998), 82-203.
doi: 10.1006/aima.1998.1728. |
[20] |
Phys. D, 143 (2000), 1-20.
doi: 10.1016/S0167-2789(00)00094-4. |
[21] |
Phys. Rev. Lett., 68 (1992), 2730-2733.
doi: 10.1103/PhysRevLett.68.2730. |
[22] |
J. Statist. Phys., 63 (1991), 613-635.
doi: 10.1007/BF01029202. |
show all references
References:
[1] |
Rev. Mod. Phys., 77 (2005), 137-185. Google Scholar |
[2] |
Hafner Publishing Co., New York, (1965), x+253 pp. |
[3] |
Phys. D, 143 (2000), 21-55.
doi: 10.1016/S0167-2789(00)00095-6. |
[4] |
Chaos, 21 (2011), 043103.
doi: 10.1063/1.3647317. |
[5] |
Physica D, 238 (2009), 1068-1081.
doi: 10.1016/j.physd.2009.03.005. |
[6] |
Phys. D, 125 (1999), 1-46.
doi: 10.1016/S0167-2789(98)00235-8. |
[7] |
J. Statist. Phys., 60 (1990), 753-800.
doi: 10.1007/BF01025993. |
[8] |
Phys. D, 91 (1996), 24-66.
doi: 10.1016/0167-2789(95)00260-X. |
[9] |
Appl. Math. Comput., 88 (1997), 39-51.
doi: 10.1016/S0096-3003(96)00305-0. |
[10] |
International Symposium on Mathematical Problems in Theoretical Physics, 420-422. Lecture Notes in Phys., 39. Springer, Berlin, (1975). |
[11] |
Springer Series in Synergetics, 19. Springer-Verlag, Berlin, 1984
doi: 10.1007/978-3-642-69689-3. |
[12] |
Phys. Rev. Lett., 93 (2004), 084102. Google Scholar |
[13] |
Int. J. of Bif. and Chaos, 15 (2005), 3457-3466.
doi: 10.1142/S0218127405014155. |
[14] |
Phys. Rev. E, 79 (2009), 026204.
doi: 10.1103/PhysRevE.79.026204. |
[15] |
J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x. |
[16] |
J. Phys. A, 30 (1997), 8095-8103.
doi: 10.1088/0305-4470/30/23/010. |
[17] |
Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743. |
[18] |
American Mathematical Society, New York, 1943. |
[19] |
Adv. Math., 137 (1998), 82-203.
doi: 10.1006/aima.1998.1728. |
[20] |
Phys. D, 143 (2000), 1-20.
doi: 10.1016/S0167-2789(00)00094-4. |
[21] |
Phys. Rev. Lett., 68 (1992), 2730-2733.
doi: 10.1103/PhysRevLett.68.2730. |
[22] |
J. Statist. Phys., 63 (1991), 613-635.
doi: 10.1007/BF01029202. |
[1] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[2] |
Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021079 |
[3] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[4] |
Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248 |
[5] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[6] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[7] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[8] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[9] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[10] |
Reza Mazrooei-Sebdani, Zahra Yousefi. The coupled 1:2 resonance in a symmetric case and parametric amplification model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3737-3765. doi: 10.3934/dcdsb.2020255 |
[11] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[12] |
Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021056 |
[13] |
Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021032 |
[14] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[15] |
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021098 |
[16] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[17] |
Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023 |
[18] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[19] |
Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397 |
[20] |
Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]