January  2013, 33(1): 193-210. doi: 10.3934/dcds.2013.33.193

On linear-quadratic dissipative control processes with time-varying coefficients

1. 

Dipartimento di Sistemi e Informatica, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy

2. 

Dipartimento di Sistemi e Informatica, Università di Firenze, Facolta' di Ingegneria, Via di Santa Marta 3, 50139 Firenze, Italy

3. 

Departamento de Matemática Aplicada, E. Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain, Spain

Received  August 2011 Revised  January 2012 Published  September 2012

Yakubovich, Fradkov, Hill and Proskurnikov have used the Yaku-bovich Frequency Theorem to prove that a strictly dissipative linear-quadratic control process with periodic coefficients admits a storage function, and various related results. We extend their analysis to the case when the coefficients are bounded uniformly continuous functions.
Citation: Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193
References:
[1]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkhäuser, (2000).   Google Scholar

[2]

W. A. Coppel, "Dichotomies in Stability Theory,", Lecture Notes in Math., 629 (1978).   Google Scholar

[3]

R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non autonomous control processes,, Discrete Contin. Dyn. Syst., 9 (2003), 677.  doi: 10.3934/dcds.2003.9.677.  Google Scholar

[4]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems,, J. Math. Anal. Appl., 380 (2011), 853.  doi: 10.1016/j.jmaa.2010.11.036.  Google Scholar

[5]

D. J. Hill, Dissipative nonlinear systems: basic properies and stability analysis,, Proc. 31st IEEE Conference on Decision and Control, 4 (1992), 3259.   Google Scholar

[6]

D. J. Hill and P. J. Moylan, Dissipative dynamical systems: Basic input-output and state properties,, J. Franklin Inst., 309 (1980), 327.  doi: 10.1016/0016-0032(80)90026-5.  Google Scholar

[7]

R. Johnson and M. Nerurkar, "Controllability, Stabilization and the Regulator Problem for Random Differential Systems,", Mem. Amer. Math. Soc., 646 (1998).   Google Scholar

[8]

R. Johnson, S. Novo and R. Obaya, Ergodic properties and Weyl $M$-functions for linear Hamiltonian systems,, Proc. Roy. Soc. Edinburgh, 130A (2000), 1045.  doi: 10.1017/S0308210500000573.  Google Scholar

[9]

E. Lee and B. Markus, "Foundation of Optimal Control Theory,", John Wiley & Sons, (1967).   Google Scholar

[10]

I. G. Polushin, Stability results for quasidissipative systems,, Proc. 3rd Eur. Control Conference ECC'95, (1995), 681.   Google Scholar

[11]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differential Equations, 27 (1978), 320.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[12]

A. V. Savkin and I. R. Petersen, Structured dissipativeness and absolute stability of nonlinear systems,, Internat. J. Control, 62 (1995), 443.  doi: 10.1080/00207179508921550.  Google Scholar

[13]

H. L. Trentelman and J. C. Willems, "Storage Functions for Dissipative Linear Systems Are Quadratic State Functions,", Proc. 36th IEEE Conf. Decision and Control, (1997), 42.   Google Scholar

[14]

J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates,, Arch. Rational Mech. Anal., 45 (1972), 321.  doi: 10.1007/BF00276493.  Google Scholar

[15]

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. I,, Siberian Math. J., 27 (1986), 614.  doi: 10.1007/BF00969175.  Google Scholar

[16]

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. II,, Siberian Math. J., 31 (1990), 1027.  doi: 10.1007/BF00970068.  Google Scholar

[17]

V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems,, IEEE Trans. Automat. Control, 52 (2007), 1039.  doi: 10.1109/TAC.2007.899013.  Google Scholar

show all references

References:
[1]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkhäuser, (2000).   Google Scholar

[2]

W. A. Coppel, "Dichotomies in Stability Theory,", Lecture Notes in Math., 629 (1978).   Google Scholar

[3]

R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non autonomous control processes,, Discrete Contin. Dyn. Syst., 9 (2003), 677.  doi: 10.3934/dcds.2003.9.677.  Google Scholar

[4]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems,, J. Math. Anal. Appl., 380 (2011), 853.  doi: 10.1016/j.jmaa.2010.11.036.  Google Scholar

[5]

D. J. Hill, Dissipative nonlinear systems: basic properies and stability analysis,, Proc. 31st IEEE Conference on Decision and Control, 4 (1992), 3259.   Google Scholar

[6]

D. J. Hill and P. J. Moylan, Dissipative dynamical systems: Basic input-output and state properties,, J. Franklin Inst., 309 (1980), 327.  doi: 10.1016/0016-0032(80)90026-5.  Google Scholar

[7]

R. Johnson and M. Nerurkar, "Controllability, Stabilization and the Regulator Problem for Random Differential Systems,", Mem. Amer. Math. Soc., 646 (1998).   Google Scholar

[8]

R. Johnson, S. Novo and R. Obaya, Ergodic properties and Weyl $M$-functions for linear Hamiltonian systems,, Proc. Roy. Soc. Edinburgh, 130A (2000), 1045.  doi: 10.1017/S0308210500000573.  Google Scholar

[9]

E. Lee and B. Markus, "Foundation of Optimal Control Theory,", John Wiley & Sons, (1967).   Google Scholar

[10]

I. G. Polushin, Stability results for quasidissipative systems,, Proc. 3rd Eur. Control Conference ECC'95, (1995), 681.   Google Scholar

[11]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differential Equations, 27 (1978), 320.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[12]

A. V. Savkin and I. R. Petersen, Structured dissipativeness and absolute stability of nonlinear systems,, Internat. J. Control, 62 (1995), 443.  doi: 10.1080/00207179508921550.  Google Scholar

[13]

H. L. Trentelman and J. C. Willems, "Storage Functions for Dissipative Linear Systems Are Quadratic State Functions,", Proc. 36th IEEE Conf. Decision and Control, (1997), 42.   Google Scholar

[14]

J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates,, Arch. Rational Mech. Anal., 45 (1972), 321.  doi: 10.1007/BF00276493.  Google Scholar

[15]

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. I,, Siberian Math. J., 27 (1986), 614.  doi: 10.1007/BF00969175.  Google Scholar

[16]

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. II,, Siberian Math. J., 31 (1990), 1027.  doi: 10.1007/BF00970068.  Google Scholar

[17]

V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems,, IEEE Trans. Automat. Control, 52 (2007), 1039.  doi: 10.1109/TAC.2007.899013.  Google Scholar

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[4]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[9]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[10]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[13]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[14]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[17]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (6)

[Back to Top]