\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On linear-quadratic dissipative control processes with time-varying coefficients

Abstract / Introduction Related Papers Cited by
  • Yakubovich, Fradkov, Hill and Proskurnikov have used the Yaku-bovich Frequency Theorem to prove that a strictly dissipative linear-quadratic control process with periodic coefficients admits a storage function, and various related results. We extend their analysis to the case when the coefficients are bounded uniformly continuous functions.
    Mathematics Subject Classification: 37B55, 93D20, 34D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Colonius and W. Kliemann, "The Dynamics of Control," Birkhäuser, Basel, 2000.

    [2]

    W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York, 629 (1978).

    [3]

    R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non autonomous control processes, Discrete Contin. Dyn. Syst., Ser. A, 9 (2003), 677-704.doi: 10.3934/dcds.2003.9.677.

    [4]

    R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems, J. Math. Anal. Appl., 380 (2011), 853-864.doi: 10.1016/j.jmaa.2010.11.036.

    [5]

    D. J. Hill, Dissipative nonlinear systems: basic properies and stability analysis, Proc. 31st IEEE Conference on Decision and Control, Vol., 4 (1992), 3259-3264.

    [6]

    D. J. Hill and P. J. Moylan, Dissipative dynamical systems: Basic input-output and state properties, J. Franklin Inst., 309 (1980), 327-357.doi: 10.1016/0016-0032(80)90026-5.

    [7]

    R. Johnson and M. Nerurkar, "Controllability, Stabilization and the Regulator Problem for Random Differential Systems," Mem. Amer. Math. Soc., 646 (1998).

    [8]

    R. Johnson, S. Novo and R. Obaya, Ergodic properties and Weyl $M$-functions for linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 130A (2000), 1045-1079.doi: 10.1017/S0308210500000573.

    [9]

    E. Lee and B. Markus, "Foundation of Optimal Control Theory," John Wiley & Sons, New York, 1967.

    [10]

    I. G. Polushin, Stability results for quasidissipative systems, Proc. 3rd Eur. Control Conference ECC'95, (1995), 681-686.

    [11]

    R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.doi: 10.1016/0022-0396(78)90057-8.

    [12]

    A. V. Savkin and I. R. Petersen, Structured dissipativeness and absolute stability of nonlinear systems, Internat. J. Control, 62 (1995), 443-460.doi: 10.1080/00207179508921550.

    [13]

    H. L. Trentelman and J. C. Willems, "Storage Functions for Dissipative Linear Systems Are Quadratic State Functions," Proc. 36th IEEE Conf. Decision and Control, (1997), 42-49.

    [14]

    J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates, Arch. Rational Mech. Anal., 45 (1972), 321-393.doi: 10.1007/BF00276493.

    [15]

    V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. I, Siberian Math. J., 27 (1986), 614-630.doi: 10.1007/BF00969175.

    [16]

    V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. II, Siberian Math. J., 31 (1990), 1027-1039.doi: 10.1007/BF00970068.

    [17]

    V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems, IEEE Trans. Automat. Control, 52 (2007), 1039-1047.doi: 10.1109/TAC.2007.899013.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return