January  2013, 33(1): 193-210. doi: 10.3934/dcds.2013.33.193

On linear-quadratic dissipative control processes with time-varying coefficients

1. 

Dipartimento di Sistemi e Informatica, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy

2. 

Dipartimento di Sistemi e Informatica, Università di Firenze, Facolta' di Ingegneria, Via di Santa Marta 3, 50139 Firenze, Italy

3. 

Departamento de Matemática Aplicada, E. Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain, Spain

Received  August 2011 Revised  January 2012 Published  September 2012

Yakubovich, Fradkov, Hill and Proskurnikov have used the Yaku-bovich Frequency Theorem to prove that a strictly dissipative linear-quadratic control process with periodic coefficients admits a storage function, and various related results. We extend their analysis to the case when the coefficients are bounded uniformly continuous functions.
Citation: Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193
References:
[1]

F. Colonius and W. Kliemann, "The Dynamics of Control," Birkhäuser, Basel, 2000.

[2]

W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York, 629 (1978).

[3]

R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non autonomous control processes, Discrete Contin. Dyn. Syst., Ser. A, 9 (2003), 677-704. doi: 10.3934/dcds.2003.9.677.

[4]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems, J. Math. Anal. Appl., 380 (2011), 853-864. doi: 10.1016/j.jmaa.2010.11.036.

[5]

D. J. Hill, Dissipative nonlinear systems: basic properies and stability analysis, Proc. 31st IEEE Conference on Decision and Control, Vol., 4 (1992), 3259-3264.

[6]

D. J. Hill and P. J. Moylan, Dissipative dynamical systems: Basic input-output and state properties, J. Franklin Inst., 309 (1980), 327-357. doi: 10.1016/0016-0032(80)90026-5.

[7]

R. Johnson and M. Nerurkar, "Controllability, Stabilization and the Regulator Problem for Random Differential Systems," Mem. Amer. Math. Soc., 646 (1998).

[8]

R. Johnson, S. Novo and R. Obaya, Ergodic properties and Weyl $M$-functions for linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 130A (2000), 1045-1079. doi: 10.1017/S0308210500000573.

[9]

E. Lee and B. Markus, "Foundation of Optimal Control Theory," John Wiley & Sons, New York, 1967.

[10]

I. G. Polushin, Stability results for quasidissipative systems, Proc. 3rd Eur. Control Conference ECC'95, (1995), 681-686.

[11]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358. doi: 10.1016/0022-0396(78)90057-8.

[12]

A. V. Savkin and I. R. Petersen, Structured dissipativeness and absolute stability of nonlinear systems, Internat. J. Control, 62 (1995), 443-460. doi: 10.1080/00207179508921550.

[13]

H. L. Trentelman and J. C. Willems, "Storage Functions for Dissipative Linear Systems Are Quadratic State Functions," Proc. 36th IEEE Conf. Decision and Control, (1997), 42-49.

[14]

J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates, Arch. Rational Mech. Anal., 45 (1972), 321-393. doi: 10.1007/BF00276493.

[15]

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. I, Siberian Math. J., 27 (1986), 614-630. doi: 10.1007/BF00969175.

[16]

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. II, Siberian Math. J., 31 (1990), 1027-1039. doi: 10.1007/BF00970068.

[17]

V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems, IEEE Trans. Automat. Control, 52 (2007), 1039-1047. doi: 10.1109/TAC.2007.899013.

show all references

References:
[1]

F. Colonius and W. Kliemann, "The Dynamics of Control," Birkhäuser, Basel, 2000.

[2]

W. A. Coppel, "Dichotomies in Stability Theory," Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York, 629 (1978).

[3]

R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non autonomous control processes, Discrete Contin. Dyn. Syst., Ser. A, 9 (2003), 677-704. doi: 10.3934/dcds.2003.9.677.

[4]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems, J. Math. Anal. Appl., 380 (2011), 853-864. doi: 10.1016/j.jmaa.2010.11.036.

[5]

D. J. Hill, Dissipative nonlinear systems: basic properies and stability analysis, Proc. 31st IEEE Conference on Decision and Control, Vol., 4 (1992), 3259-3264.

[6]

D. J. Hill and P. J. Moylan, Dissipative dynamical systems: Basic input-output and state properties, J. Franklin Inst., 309 (1980), 327-357. doi: 10.1016/0016-0032(80)90026-5.

[7]

R. Johnson and M. Nerurkar, "Controllability, Stabilization and the Regulator Problem for Random Differential Systems," Mem. Amer. Math. Soc., 646 (1998).

[8]

R. Johnson, S. Novo and R. Obaya, Ergodic properties and Weyl $M$-functions for linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 130A (2000), 1045-1079. doi: 10.1017/S0308210500000573.

[9]

E. Lee and B. Markus, "Foundation of Optimal Control Theory," John Wiley & Sons, New York, 1967.

[10]

I. G. Polushin, Stability results for quasidissipative systems, Proc. 3rd Eur. Control Conference ECC'95, (1995), 681-686.

[11]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358. doi: 10.1016/0022-0396(78)90057-8.

[12]

A. V. Savkin and I. R. Petersen, Structured dissipativeness and absolute stability of nonlinear systems, Internat. J. Control, 62 (1995), 443-460. doi: 10.1080/00207179508921550.

[13]

H. L. Trentelman and J. C. Willems, "Storage Functions for Dissipative Linear Systems Are Quadratic State Functions," Proc. 36th IEEE Conf. Decision and Control, (1997), 42-49.

[14]

J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates, Arch. Rational Mech. Anal., 45 (1972), 321-393. doi: 10.1007/BF00276493.

[15]

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. I, Siberian Math. J., 27 (1986), 614-630. doi: 10.1007/BF00969175.

[16]

V. A. Yakubovich, A linear-quadratic problem of optimization and the frequency theorem for periodic systems. II, Siberian Math. J., 31 (1990), 1027-1039. doi: 10.1007/BF00970068.

[17]

V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems, IEEE Trans. Automat. Control, 52 (2007), 1039-1047. doi: 10.1109/TAC.2007.899013.

[1]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[2]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[3]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[4]

Mohamed Aliane, Mohand Bentobache, Nacima Moussouni, Philippe Marthon. Direct method to solve linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 645-663. doi: 10.3934/naco.2021002

[5]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control and Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[6]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[7]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial and Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[8]

Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117

[9]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[10]

Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linear-quadratic control problems with bang-bang solutions. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 547-570. doi: 10.3934/naco.2012.2.547

[11]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[12]

Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034

[13]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[14]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[15]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[16]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[17]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[18]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[19]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[20]

Jianhui Huang, Shujun Wang, Zhen Wu. Backward-forward linear-quadratic mean-field games with major and minor agents. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 8-. doi: 10.1186/s41546-016-0009-9

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (6)

[Back to Top]