May  2013, 33(5): 1945-1964. doi: 10.3934/dcds.2013.33.1945

Actions of Baumslag-Solitar groups on surfaces

1. 

IMERL, Facultad de Ingeniería, Universidad de La República, C.C. 30,Montevideo

2. 

Laboratoire Paul PAINLEVÉ, Université de Lille1, 59655 Villeneuve d'Ascq Cédex, France

Received  November 2011 Revised  July 2012 Published  December 2012

Let $BS(1, n) =< a, b \ | \ aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ n\geq 2$. It is known that $BS(1, n)$ is isomorphic to the group generated by the two affine maps of the real line: $f_0(x) = x + 1$ and $h_0(x) = nx $.
    This paper deals with the dynamics of actions of $BS(1, n)$ on closed orientable surfaces. We exhibit a smooth $BS(1,n)$-action without finite orbits on $\mathbb{T} ^2$, we study the dynamical behavior of it and of its $C^1$-pertubations and we prove that it is not locally rigid.
    We develop a general dynamical study for faithful topological $BS(1,n)$-actions on closed surfaces $S$. We prove that such actions $ < f, h \ | \ h o f o h^{-1} = f^n >$ admit a minimal set included in $fix(f)$, the set of fixed points of $f$, provided that $fix(f)$ is not empty.
    When $S= \mathbb{T}^2$, we show that there exists a positive integer $N$, such that $fix(f^N)$ is non-empty and contains a minimal set of the action. As a corollary, we get that there are no minimal faithful topological actions of $BS(1,n)$ on $\mathbb{T}^2$.
    When the surface $S$ has genus at least 2, is closed and orientable, and $f$ is isotopic to identity, then $fix(f)$ is non empty and contains a minimal set of the action. Moreover if the action is $C^1$ and isotopic to identity then $fix(f)$ contains any minimal set.
Citation: Nancy Guelman, Isabelle Liousse. Actions of Baumslag-Solitar groups on surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1945-1964. doi: 10.3934/dcds.2013.33.1945
References:
[1]

M. Belliart and I. Liousse, Actions sans point fixe sur les surfaces compactes,, Preprint, 34 (1994), 1.  doi: 10.1007/PL00004317.  Google Scholar

[2]

C. Bonatti, Un point fixe commun pour des difféomorphismes commutants de $S^2$,, Ann. of Math., 129 (1989), 61.  doi: 10.2307/1971485.  Google Scholar

[3]

L. Burslem and A. Wilkinson, Global rigidity of solvable group actions on $S^1$,, Geom. Topol., 8 (2004), 877.  doi: 10.2140/gt.2004.8.877.  Google Scholar

[4]

S. Druck, F. Fang and S. Firmo, Fixed points of discrete nilpotent group actions on $S^2$,, Ann. Inst. Fourier (Grenoble), 52 (2002), 1075.   Google Scholar

[5]

B. Farb and J. Franks, Groups of homeomorphisms of one-manifolds $I$: Actions of nonlinear groups,, Preprint (2001)., (2001).   Google Scholar

[6]

B. Farb, A. Lubotzky and Y. Minsky, Rank-1 phenomena for mapping class groups,, Duke Math. J., 106 (2001), 581.  doi: 10.1215/S0012-7094-01-10636-4.  Google Scholar

[7]

J. Franks, Realizing rotation vectors for torus homeomorphisms,, Trans. Amer. Math. Soc., 311 (1989), 107.  doi: 10.2307/2001018.  Google Scholar

[8]

J. Franks and M. Handel, Distortion elements in group actions on surfaces,, Duke Math. J., 131 (2006), 441.  doi: 10.1215/S0012-7094-06-13132-0.  Google Scholar

[9]

J. Franks, M. Handel and K. Parwani, Fixed points of abelian actions on $S^2$,, Erg. Th. and Dyn. Sys., 27 (2007), 1557.  doi: 10.1017/S0143385706001088.  Google Scholar

[10]

J. Franks, Handel and K. Parwani, Fixed points of abelian actions,, Jour. of Modern Dynamics, 1 (2007), 443.  doi: 10.3934/jmd.2007.1.443.  Google Scholar

[11]

E. Ghys, Groups acting on the circle,, Enseign. Math. (2), 47 (2001), 329.   Google Scholar

[12]

N. Guelman and I. Liousse, $C^1$ actions of Baumslag Solitar groups on $S^{1}$,, Algebraic & Geometric Topology, 11 (2011), 1701.  doi: 10.2140/agt.2011.11.1701.  Google Scholar

[13]

M. Gromov, Asymptotic invariants of infinite groups,, in, 2 (1993).   Google Scholar

[14]

M. Hirsch, A stable analytic foliation with only exceptional minimal set,, Lecture Notes in Math. Springer-Verlag, 468 (1975).   Google Scholar

[15]

M. Hirsch, C. Pugh and M. Shub, Invariant manifolds,, Lecture Notes in Math. Springer-Verlag, 583 (1977).   Google Scholar

[16]

E. Lima, Common singularities of commuting vector fields on 2-manifolds,, Comment. Math. Helv., 39 (1964), 97.   Google Scholar

[17]

A. McCarthy, Rigidity of trivial actions of abelian-by-cyclic groups,, Proc. Amer. Math. Soc., 138 (2010), 1395.  doi: 10.1090/S0002-9939-09-10173-9.  Google Scholar

[18]

M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori,, J. London Math. Soc., 40 (1989), 490.  doi: 10.1112/jlms/s2-40.3.490.  Google Scholar

[19]

Y. Moriyama, Polycyclic groups of diffeomorphisms on the half-line,, Hokkaido Math. Jour., 23 (1994), 399.   Google Scholar

[20]

A. Navas, Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13.  doi: 10.1007/s00574-004-0002-2.  Google Scholar

[21]

J. F. Plante, Fixed points of Lie group actions on surfaces,, Ergod. Th. and Dynam. Sys., 6 (1986), 149.  doi: 10.1017/S0143385700003345.  Google Scholar

[22]

J. F. Plante and W. Thurston, Polynomial growth in holonomy groups of foliations,, Comment. Math. Helv., 51 (1976), 567.   Google Scholar

[23]

J. Rebelo and R. Silva, The multiple ergodicity of nondiscrete subgroups of Dif $f^{omega}$$(S^{1})$,, Mosc. Math. J., 3 (2003), 123.   Google Scholar

[24]

M. Shub, Expanding maps,, Global Analysis Proceedings of the Symposium on Pure Mathematics, XIV (1970), 273.   Google Scholar

[25]

M. Zdun, On embedding of homeomorphisms of the circle in a continuous flow,, Iteration Theory and Its Functional Equations, 1163 (1985), 218.  doi: 10.1007/BFb0076436.  Google Scholar

show all references

References:
[1]

M. Belliart and I. Liousse, Actions sans point fixe sur les surfaces compactes,, Preprint, 34 (1994), 1.  doi: 10.1007/PL00004317.  Google Scholar

[2]

C. Bonatti, Un point fixe commun pour des difféomorphismes commutants de $S^2$,, Ann. of Math., 129 (1989), 61.  doi: 10.2307/1971485.  Google Scholar

[3]

L. Burslem and A. Wilkinson, Global rigidity of solvable group actions on $S^1$,, Geom. Topol., 8 (2004), 877.  doi: 10.2140/gt.2004.8.877.  Google Scholar

[4]

S. Druck, F. Fang and S. Firmo, Fixed points of discrete nilpotent group actions on $S^2$,, Ann. Inst. Fourier (Grenoble), 52 (2002), 1075.   Google Scholar

[5]

B. Farb and J. Franks, Groups of homeomorphisms of one-manifolds $I$: Actions of nonlinear groups,, Preprint (2001)., (2001).   Google Scholar

[6]

B. Farb, A. Lubotzky and Y. Minsky, Rank-1 phenomena for mapping class groups,, Duke Math. J., 106 (2001), 581.  doi: 10.1215/S0012-7094-01-10636-4.  Google Scholar

[7]

J. Franks, Realizing rotation vectors for torus homeomorphisms,, Trans. Amer. Math. Soc., 311 (1989), 107.  doi: 10.2307/2001018.  Google Scholar

[8]

J. Franks and M. Handel, Distortion elements in group actions on surfaces,, Duke Math. J., 131 (2006), 441.  doi: 10.1215/S0012-7094-06-13132-0.  Google Scholar

[9]

J. Franks, M. Handel and K. Parwani, Fixed points of abelian actions on $S^2$,, Erg. Th. and Dyn. Sys., 27 (2007), 1557.  doi: 10.1017/S0143385706001088.  Google Scholar

[10]

J. Franks, Handel and K. Parwani, Fixed points of abelian actions,, Jour. of Modern Dynamics, 1 (2007), 443.  doi: 10.3934/jmd.2007.1.443.  Google Scholar

[11]

E. Ghys, Groups acting on the circle,, Enseign. Math. (2), 47 (2001), 329.   Google Scholar

[12]

N. Guelman and I. Liousse, $C^1$ actions of Baumslag Solitar groups on $S^{1}$,, Algebraic & Geometric Topology, 11 (2011), 1701.  doi: 10.2140/agt.2011.11.1701.  Google Scholar

[13]

M. Gromov, Asymptotic invariants of infinite groups,, in, 2 (1993).   Google Scholar

[14]

M. Hirsch, A stable analytic foliation with only exceptional minimal set,, Lecture Notes in Math. Springer-Verlag, 468 (1975).   Google Scholar

[15]

M. Hirsch, C. Pugh and M. Shub, Invariant manifolds,, Lecture Notes in Math. Springer-Verlag, 583 (1977).   Google Scholar

[16]

E. Lima, Common singularities of commuting vector fields on 2-manifolds,, Comment. Math. Helv., 39 (1964), 97.   Google Scholar

[17]

A. McCarthy, Rigidity of trivial actions of abelian-by-cyclic groups,, Proc. Amer. Math. Soc., 138 (2010), 1395.  doi: 10.1090/S0002-9939-09-10173-9.  Google Scholar

[18]

M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori,, J. London Math. Soc., 40 (1989), 490.  doi: 10.1112/jlms/s2-40.3.490.  Google Scholar

[19]

Y. Moriyama, Polycyclic groups of diffeomorphisms on the half-line,, Hokkaido Math. Jour., 23 (1994), 399.   Google Scholar

[20]

A. Navas, Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13.  doi: 10.1007/s00574-004-0002-2.  Google Scholar

[21]

J. F. Plante, Fixed points of Lie group actions on surfaces,, Ergod. Th. and Dynam. Sys., 6 (1986), 149.  doi: 10.1017/S0143385700003345.  Google Scholar

[22]

J. F. Plante and W. Thurston, Polynomial growth in holonomy groups of foliations,, Comment. Math. Helv., 51 (1976), 567.   Google Scholar

[23]

J. Rebelo and R. Silva, The multiple ergodicity of nondiscrete subgroups of Dif $f^{omega}$$(S^{1})$,, Mosc. Math. J., 3 (2003), 123.   Google Scholar

[24]

M. Shub, Expanding maps,, Global Analysis Proceedings of the Symposium on Pure Mathematics, XIV (1970), 273.   Google Scholar

[25]

M. Zdun, On embedding of homeomorphisms of the circle in a continuous flow,, Iteration Theory and Its Functional Equations, 1163 (1985), 218.  doi: 10.1007/BFb0076436.  Google Scholar

[1]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021008

[2]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[3]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[4]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021016

[5]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[6]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[7]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[10]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[11]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[12]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[13]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[15]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[16]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[17]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[18]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[19]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[20]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]