Citation: |
[1] |
L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations. IV. Starshaped compact Weingarten hypersurfaces, in "Current Topics in Partial Differential Equations" (Kinokuniya, Tokyo.), (1986), 1-26. |
[2] |
L. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math., 41 (1988), 47-70.doi: 10.1002/cpa.3160410105. |
[3] |
C. Gerhardt., "Curvature Problems," Series in Geometry and Topology, 39. International Press, Somerville, MA, 2006. |
[4] |
P. Guan, Topics Geometric fully nonlinear equations, Lecture Notes, 147-page Manuscript (2004). Available from: http://www.math.mcgill.ca/guan/zheda0508.pdf. |
[5] |
P. Guan, Private notes. |
[6] |
B. Guan and P. Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math., 156 (2002), 655-673.doi: 10.2307/3597202. |
[7] |
P. Guan and Y. Li, $C^{1,1}$ estimates for solutions of a problem of Alexandrov, Comm. Pure Appl. Math., 50 (1997), 789-811.doi: 10.1002/(SICI)1097-0312(199708)50:8<789::AID-CPA4>3.3.CO;2-B. |
[8] | |
[9] |
P. Guan, J. Li and Y. Li, Hypersurfaces of prescribed curvature measure, Duke Math. J., 161 (2012), 1927-1942. |
[10] |
P. Guan, C. S. Lin and X. N. Ma, The existence of convex body with prescribed curvature measures, Int. Math. Res. Not. IMRN, 11 (2009), 1947-1975.doi: 10.1093/imrn/rnp007. |
[11] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second Edition, Revised Third Printing, Springer-Verlag, 1998. |
[12] |
N. M. Ivochkina, Solution of the Dirichlet problem for curvature equations of order m, Mathematics of the USSR-Sbornik, 67 (1990), 317-339. |
[13] |
N. M. Ivochkina, The Dirichlet problem for the equations of curvature of order $m$, Leningrad Math. J., 2 (1991), 192-217. |
[14] |
N. V. Krylov, On the general notion of fully nonlinear second-order elliptic equations, Trans. Amer. Math. Soc., 347 (1995), 857-895.doi: 10.2307/2154876. |
[15] |
M. Lin and N. S. Trudinger, On some inequalities for elementary symmetric functions, Bull. Austral. Math. Soc., 50 (1994), 317-326. |
[16] |
V. I. Oliker, Existence and uniqueness of convex hypersurfaces with prescribed Gaussian curvature in spaces of constant curvature, " Sem. Inst. Mate. Appl. Giovanni Sansone," Univ. Studi Firenze, (1983). |
[17] |
A. V. Pogorelov, "Extrinsic Geometry of Convex Surfaces," translated from the Russian by Israel Program for Scientific Translations, Amer. Math. Soc., Providence, RI, 1973. |
[18] |
R. Schneider, "Convex Bodies: the Brunn-Minkowski Theory," Encyclopedia of Mathematics and its Applications, 44, Cambridge Univ. Press, Cambridge, 1993.doi: 10.1017/CBO9780511526282. |
[19] |
W. Sheng, J. Urbas and X. J. Wang, Interior curvature bounds for a class of curvature equations, Duke Math. J., 123 (2004), 235-264.doi: 10.1215/S0012-7094-04-12321-8. |
[20] |
K. Takimoto, Solution to the boundary blowup problem for $k$-curvature equation, Calc. Var. Partial Differential Equations, 26 (2006), 357-377.doi: 10.1007/s00526-006-0011-7. |
[21] |
N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal., 111 (1990), 153-179.doi: 10.1007/BF00375406. |
[22] |
J. Urbas, An interior curvature bound for hypersurfaces of prescribed $k$-th mean curvature, J. Reine Angew. Math., 519 (2000), 41-57.doi: 10.1515/crll.2000.016. |