May  2013, 33(5): 1987-2005. doi: 10.3934/dcds.2013.33.1987

Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality

1. 

Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097, China

2. 

School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, 221116, China

Received  November 2011 Revised  March 2012 Published  December 2012

This paper is concerned with the symmetry results for the $2k$-order singular Lane-Emden type partial differential system $$ \left\{\begin{array}{ll} (-\Delta)^k(|x|^{\alpha}u(x)) =|x|^{-\beta} v^{q}(x), \\ (-\Delta)^k(|x|^{\beta}v(x)) =|x|^{-\alpha} u^p(x), \end{array} \right. $$ and the weighted Hardy-Littlewood-Sobolev type integral system $$ \left \{ \begin{array}{l} u(x) = \frac{1}{|x|^{\alpha}}\int_{R^{n}} \frac{v^q(y)}{|y|^{\beta}|x-y|^{\lambda}} dy\\ v(x) = \frac{1}{|x|^{\beta}}\int_{R^{n}} \frac{u^p(y)}{|y|^{\alpha}|x-y|^{\lambda}} dy. \end{array} \right. $$ Here $x \in R^n \setminus \{0\}$. We first establish the equivalence of this integral system and an fractional order partial differential system, which includes the $2k$-order PDE system above. For the integral system, we prove that the positive locally bounded solutions are symmetric and decreasing about some axis by means of the method of moving planes in integral forms introduced by Chen-Li-Ou. In addition, we also show that the integrable solutions are locally bounded. Thus, the equivalence implies the positive solutions of the PDE system, particularly including the higher integer-order PDE system, also have the corresponding properties.
Citation: Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987
References:
[1]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. doi: 10.1002/cpa.3160420304.

[2]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems,, Milan J. Math., 76 (2008), 27. doi: 10.1007/s00032-008-0090-3.

[3]

A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry,, Math. Res. Letters, 4 (1997), 91.

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[5]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547. doi: 10.2307/2951844.

[6]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5.

[7]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, arXiv:1110.2539v1, (2011).

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445.

[9]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116.

[10]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Adv. Math., 229 (2012), 2835. doi: 10.1016/j.aim.2012.01.018.

[11]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, Collected in the book Mathematical\, 7a (1981).

[12]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1977).

[13]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X.

[14]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5.

[15]

Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation,, Discrete Contin. Dyn. Syst., 30 (2011), 547. doi: 10.3934/dcds.2011.30.547.

[16]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43. doi: 10.1007/s00526-011-0450-7.

[17]

Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Comm. Pure Appl. Anal., 10 (2011), 193. doi: 10.3934/cpaa.2011.10.193.

[18]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221. doi: 10.1007/s002220050023.

[19]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453.

[20]

Y. Li, Remark on some conformally invariant integral equations: The method of moving planes,, J. Eur. Math. Soc., 6 (2004), 153.

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032.

[22]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $R^n$,, J. Differential equations, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016.

[23]

M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality,, J. Math. Anal. Appl., 389 (2012), 498. doi: 10.1016/j.jmaa.2011.12.004.

[24]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.

[25]

E. M. Stein, "Singular Integrals and Differentiability Properties of Function,", Princetion Math. Series, 30 (1970).

[26]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.

[27]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: 10.1007/s002080050258.

show all references

References:
[1]

L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. doi: 10.1002/cpa.3160420304.

[2]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems,, Milan J. Math., 76 (2008), 27. doi: 10.1007/s00032-008-0090-3.

[3]

A. Chang and P. Yang, On uniqueness of an n-th order differential equation in conformal geometry,, Math. Res. Letters, 4 (1997), 91.

[4]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8.

[5]

W. Chen and C. Li, A priori estimates for prescribing scalar curvature equations,, Ann. of Math., 145 (1997), 547. doi: 10.2307/2951844.

[6]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5.

[7]

W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications,, arXiv:1110.2539v1, (2011).

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445.

[9]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116.

[10]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, Adv. Math., 229 (2012), 2835. doi: 10.1016/j.aim.2012.01.018.

[11]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, Collected in the book Mathematical\, 7a (1981).

[12]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1977).

[13]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X.

[14]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5.

[15]

Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation,, Discrete Contin. Dyn. Syst., 30 (2011), 547. doi: 10.3934/dcds.2011.30.547.

[16]

Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43. doi: 10.1007/s00526-011-0450-7.

[17]

Y. Lei and C. Ma, Asymptotic behavior for solutions of some integral equations,, Comm. Pure Appl. Anal., 10 (2011), 193. doi: 10.3934/cpaa.2011.10.193.

[18]

C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221. doi: 10.1007/s002220050023.

[19]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Comm. Pure Appl. Anal., 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453.

[20]

Y. Li, Remark on some conformally invariant integral equations: The method of moving planes,, J. Eur. Math. Soc., 6 (2004), 153.

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032.

[22]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $R^n$,, J. Differential equations, 225 (2006), 685. doi: 10.1016/j.jde.2005.10.016.

[23]

M. Onodera, On the shape of solutions to an integral system related to the weighted Hardy-Littlewood-Sobolev inequality,, J. Math. Anal. Appl., 389 (2012), 498. doi: 10.1016/j.jmaa.2011.12.004.

[24]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.

[25]

E. M. Stein, "Singular Integrals and Differentiability Properties of Function,", Princetion Math. Series, 30 (1970).

[26]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.

[27]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207. doi: 10.1007/s002080050258.

[1]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[2]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[3]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[4]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[5]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[6]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[7]

Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469

[8]

Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167

[9]

Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058

[10]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[11]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[12]

Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510

[13]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[14]

Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094

[15]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[16]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[17]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[18]

Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure & Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807

[19]

Robert Jankowski, Barbara Łupińska, Magdalena Nockowska-Rosiak, Ewa Schmeidel. Monotonic solutions of a higher-order neutral difference system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 253-261. doi: 10.3934/dcdsb.2018017

[20]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]