• Previous Article
    Initial trace of positive solutions of a class of degenerate heat equation with absorption
  • DCDS Home
  • This Issue
  • Next Article
    Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality
May  2013, 33(5): 2007-2031. doi: 10.3934/dcds.2013.33.2007

The diffusive logistic model with a free boundary and seasonal succession

1. 

Department of Mathematics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China, and Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7

Received  December 2011 Revised  April 2012 Published  December 2012

This paper concerns a diffusive logistic equation with a free boundary and seasonal succession, which is formulated to investigate the spreading of a new or invasive species, where the free boundary represents the expanding front and the time periodicity accounts for the effect of the bad and good seasons. The condition to determine whether the species spatially spreads to infinity or vanishes at a finite space interval is derived, and when the spreading happens, the asymptotic spreading speed of the species is also given. The obtained results reveal the effect of seasonal succession on the dynamical behavior of the spreading of the single species.
Citation: Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5. Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5. Google Scholar

[3]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Networks and Heterogeneous Media, (). Google Scholar

[4]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693. Google Scholar

[5]

D. L. DeAngelis, J. C. Trexler and D. D. Donalson, "Competition Dynamics in a Seasionally Varying Wetland,", Chapter 1, (2009), 1. Google Scholar

[6]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Differential Equations, 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011. Google Scholar

[7]

Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, preprint, (2011). Google Scholar

[8]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. Google Scholar

[9]

P. J. DuBowy, Waterfowl communities and seasonal environments: Temporal variabolity in interspecific competition,, Ecology, 69 (1988), 1439. Google Scholar

[10]

S.-B. Hsu and X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession,, J. Math. Biol., 64 (2012), 109. doi: 10.1007/s00285-011-0408-6. Google Scholar

[11]

S. S. Hu and A. J. Tessier, Seasonal succession and the strength of intra- and interspecific competition in a Daphnia assemblage,, Ecology, 76 (1995), 2278. Google Scholar

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc. Providence, (1968). Google Scholar

[13]

X. Liang, Y. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems,, J. Differential Equations, 231 (2006), 57. doi: 10.1016/j.jde.2006.04.010. Google Scholar

[14]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154. Google Scholar

[15]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/0951-7715/20/8/004. Google Scholar

[16]

E. Litchman and C. A. Klausmeier, Competition of phytoplankton under fluctuating light,, American Naturalist, 157 (2001), 170. Google Scholar

[17]

T. R. Malthus, "An Essay on the Principle of Population,", 1798. Printed for J. Johnson in St. Pauls Church-Yard, (1998). Google Scholar

[18]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151. doi: 10.1007/BF03167042. Google Scholar

[19]

G. Nadin, The principal eigenvalue of a space-time periodic parabolic operator,, Ann. Mat. Pura Appl., 188 (2009), 269. doi: 10.1007/s10231-008-0075-4. Google Scholar

[20]

R. Peng and D. Wei, The periodic-parabolic logistic equation on $\R^N$,, Discrete and Continuous Dyn. Syst. Series A, 32 (2012), 619. Google Scholar

[21]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. Google Scholar

[22]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", Springer-Verlag, (2003). Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5. Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5. Google Scholar

[3]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Networks and Heterogeneous Media, (). Google Scholar

[4]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693. Google Scholar

[5]

D. L. DeAngelis, J. C. Trexler and D. D. Donalson, "Competition Dynamics in a Seasionally Varying Wetland,", Chapter 1, (2009), 1. Google Scholar

[6]

Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Differential Equations, 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011. Google Scholar

[7]

Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, preprint, (2011). Google Scholar

[8]

Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. Google Scholar

[9]

P. J. DuBowy, Waterfowl communities and seasonal environments: Temporal variabolity in interspecific competition,, Ecology, 69 (1988), 1439. Google Scholar

[10]

S.-B. Hsu and X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession,, J. Math. Biol., 64 (2012), 109. doi: 10.1007/s00285-011-0408-6. Google Scholar

[11]

S. S. Hu and A. J. Tessier, Seasonal succession and the strength of intra- and interspecific competition in a Daphnia assemblage,, Ecology, 76 (1995), 2278. Google Scholar

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc. Providence, (1968). Google Scholar

[13]

X. Liang, Y. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems,, J. Differential Equations, 231 (2006), 57. doi: 10.1016/j.jde.2006.04.010. Google Scholar

[14]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154. Google Scholar

[15]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/0951-7715/20/8/004. Google Scholar

[16]

E. Litchman and C. A. Klausmeier, Competition of phytoplankton under fluctuating light,, American Naturalist, 157 (2001), 170. Google Scholar

[17]

T. R. Malthus, "An Essay on the Principle of Population,", 1798. Printed for J. Johnson in St. Pauls Church-Yard, (1998). Google Scholar

[18]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151. doi: 10.1007/BF03167042. Google Scholar

[19]

G. Nadin, The principal eigenvalue of a space-time periodic parabolic operator,, Ann. Mat. Pura Appl., 188 (2009), 269. doi: 10.1007/s10231-008-0075-4. Google Scholar

[20]

R. Peng and D. Wei, The periodic-parabolic logistic equation on $\R^N$,, Discrete and Continuous Dyn. Syst. Series A, 32 (2012), 619. Google Scholar

[21]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. Google Scholar

[22]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", Springer-Verlag, (2003). Google Scholar

[1]

Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837

[2]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[3]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[4]

Qiaoling Chen, Fengquan Li, Feng Wang. A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 13-35. doi: 10.3934/dcdsb.2016.21.13

[5]

Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu. Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1407-1424. doi: 10.3934/mbe.2017073

[6]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[7]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[8]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[9]

Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3105-3132. doi: 10.3934/dcdsb.2014.19.3105

[10]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[11]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[12]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[13]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[14]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[15]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[16]

Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240

[17]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[18]

Jing Wang, Lining Tong. Vanishing viscosity limit of 1d quasilinear parabolic equation with multiple boundary layers. Communications on Pure & Applied Analysis, 2019, 18 (2) : 887-910. doi: 10.3934/cpaa.2019043

[19]

Luis Caffarelli, Serena Dipierro, Enrico Valdinoci. A logistic equation with nonlocal interactions. Kinetic & Related Models, 2017, 10 (1) : 141-170. doi: 10.3934/krm.2017006

[20]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (44)

Other articles
by authors

[Back to Top]