\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Initial trace of positive solutions of a class of degenerate heat equation with absorption

Abstract Related Papers Cited by
  • We study the initial value problem with unbounded nonnegative functions or measures for the equation $ ∂_t u-Δ_p u+f(u)=0$ in $\mathbb{R}^ × (0,\infty)$ where $p>1$, $Δ_p u = div(|∇ u|^{p-2} ∇ u )$ and $f$ is a continuous, nondecreasing nonnegative function such that $f(0)=0$. In the case $p>\frac{2N}{N+1}$, we provide a sufficient condition on $f$ for existence and uniqueness of the solutions satisfying the initial data $kΔ_0$ and we study their limit when $k → ∞$ according $f^{-1}$ and $F^{-1/p}$ are integrable or not at infinity, where $F(s)= ∫_0^s f(σ)dσ$. We also give new results dealing with uniqueness and non uniqueness for the initial value problem with unbounded initial data. If $p>2$, we prove that, for a large class of nonlinearities $f$, any positive solution admits an initial trace in the class of positive Borel measures. As a model case we consider the case $f(u)=u^α ln^β (u+1)$, where $α>0$ and $β ≥ 0$.
    Mathematics Subject Classification: Primary: 35K92, 35K61; Secondary: 35A02.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. I. Barenblatt, On self-similar motions of compressible fluids in porous media, Prikl. Mat. Mech., 16 (1952), 679-698 (Russian)

    [2]

    M. F. Bidaut-Véron, E. Chasseigne and L. Véron, Initial trace of solution of some quasilinear parabolic equations with absorption, J. Funct. Anal., 193 (2002), 140-205.doi: 10.1006/jfan.2002.3912.

    [3]

    X. Chen, Y. Qi and M. Wang, Singular solution of the parabolic p-Laplacian with absorption, Trans. Amer. Math. Soc., 359 (2007), 5653-5668.doi: 10.1090/S0002-9947-07-04336-X.

    [4]

    M. G. Crandall and T. A. Liggett, Generation of seigroups of nonlinear transformations in general Banach spaces, Amer. J. Math., 93 (1971), 265-298.

    [5]

    E. DiBenedetto, "Degenerate Parabolic Equations," Springer-Verlag, Series Universitext, New York, 1993.doi: 10.1007/978-1-4612-0895-2.

    [6]

    E. DiBenedetto and M. A. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and cauchy problem when $1 < p < 2$, Arch. Rat. Mech. Anal., 111 (1990), 225-290.doi: 10.1007/BF00400111.

    [7]

    A. Friedman and L. Véron, Singular solutions of some quasilinear elliptic equations, Arch. Rat. Mech. Anal., 96 (1986), 359-387.doi: 10.1007/BF00251804.

    [8]

    M. Guedda and L. Véron, Local and global properties of solutions of quasilinear elliptic equations, J. Differential Equations, 76 (1988), 159-189.doi: 10.1016/0022-0396(88)90068-X.

    [9]

    M. Herrero and J. L. Vazquez, Asymptotic behaviour of the solution of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse (5)ème serie, 3 (1981), 113-127.

    [10]

    S. Kamin and J. L. Vazquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, 4 (1988), 339-352.doi: 10.4171/RMI/77.

    [11]

    S. Kamin and J. L. Vazquez, Singular solutions of of some nonlinear parabolic equations, J. Analyse Math., 59 (1992), 51-74.doi: 10.1007/BF02790217.

    [12]

    J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.

    [13]

    F. Li, Regularity for entropy solutions of a class of parabolic equations with irregular data, Comment. Math. Univ. Carolin., 48 (2007), 69-82.

    [14]

    M. Marcus and L. Véron, Initial trace of positive solutions to semilinear parabolic inequalities, Adv. Nonlinear Studies, 2 (2002), 395-436.

    [15]

    T. Nguyen Phuoc and L. Véron, Local and global properties of solutions of heat equation with superlinear absorption, Adv. Differential Equations, 16 (2011), 487-522.

    [16]

    S. Segura de Leon and J. Toledo, Regularity for entropy solutions of parabolic p-Laplacian type equations, Publicacions Matemàtiques, 43 (1999), 665-683.doi: 10.5565/PUBLMAT_43299_08.

    [17]

    J. L. Vazquez, An a priori interior estimate for the solutions of a nonlinear problem representing weak diffusion, Nonlinear Anal., 5 (1981), 95-103.doi: 10.1016/0362-546X(81)90074-2.

    [18]

    J. L. Vazquez and L. Véron, Isolated singularities of some semilinear elliptic equations, J. Differential Equations, 60 (1985), 301-321.doi: 10.1016/0022-0396(85)90127-5.

    [19]

    J. L. Vazquez and L. Véron, Different kinds of singular solutions of nonlinear parabolic equations, Nonlinear Problems in Applied Mathematics, 240-249, SIAM, Philadelphia, PA, (1996).

    [20]

    L. Véron, Some remarks on the convergence of approximate solutions of nonlinear evolution equations in Hilbert spaces, Math. Comp., 39 (1982), 325-337.doi: 10.2307/2007318.

    [21]

    L. Véron, "Singularities of Solutions of Second Other Quasilinear Equations," Pitman Research Notes in Math. Series 353, Adison Wesley, Longman, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return