Citation: |
[1] |
V. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361. |
[2] |
M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group, Preprint, arXiv:1105.0327. |
[3] |
L. Biliotti, The exponential map of a weak Riemannian Hilbert manifold, Illinois J. Math., 48 (2004), 1191-1206. |
[4] |
A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35 (2002), R51-R79.doi: 10.1088/0305-4470/35/32/201. |
[5] |
M. P. do Carmo, "Riemannian Geometry," Birkhäuser, Boston, 1992. |
[6] |
D. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force, Ann. Math. (2), 105 (1977), 141-200. |
[7] |
D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. (2), 92 (1970), 102-163. |
[8] |
J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation, Comm. Pure Appl. Analysis, 11 (2012), 1407-1419.doi: 10.3934/cpaa.2012.11.1407. |
[9] |
P. Hartman, "Ordinary Differential Equations," Wiley, New York, 1964. |
[10] |
T. Hou and C. Li, On global well-posedness of the Lagrangian averaged Euler equations, SIAM J. Math. Anal., 38 (2006), 782-794.doi: 10.1137/050625783. |
[11] |
S. Lang, "Fundamentals of Differential Geometry," Springer-Verlag, New York, 1999.doi: 10.1007/978-1-4612-0541-8. |
[12] |
J. E. Marsden, D. G. Ebin and A. E. Fischer, Diffeomorphism groups, hydrodynamics and relativity, Proc. Can. Math. Congress, 1 (1972), 135-279. |
[13] |
P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc., 8 (2006), 1-48.doi: 10.4171/JEMS/37. |
[14] |
G. Misiołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7. |
[15] |
S. C. Preston, The motion of whips and chains, J. Diff. Eq., 251 (2011), 504-550.doi: 10.1016/j.jde.2011.05.005. |
[16] |
S. C. Preston, The geometry of whips, Ann. Global Anal. Geom., 41 (2012), 281-305.doi: 10.1007/s10455-011-9283-z. |
[17] |
R. Saxton, Existence of solutions for a finite nonlinearly hyperelastic rod, J. Math. Anal. Appl., 105 (1985), 59-75.doi: 10.1016/0022-247X(85)90096-4. |
[18] |
S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics, J. Funct. Anal., 160 (1998), 337-365.doi: 10.1006/jfan.1998.3335. |
[19] |
A. Shnirelman, Generalized fluid flows, their approximation and applications, Geom. Funct. Anal., 4 (1994), 586-620.doi: 10.1007/BF01896409. |
[20] |
A. Thess, O. Zikanov and A. Nepomnyashchy, Finite-time singularity in the vortex dynamics of a string, Phys. Rev. E, 59 (1999), 3637-3640.doi: 10.1103/PhysRevE.59.3637. |