\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An $H^1$ model for inextensible strings

Abstract Related Papers Cited by
  • We study geodesics of the $H^1$ Riemannian metric $$ « u,v » = ∫_0^1 ‹ u(s), v(s)› + α^2 ‹ u'(s), v'(s)› ds$$ on the space of inextensible curves $\gamma\colon [0,1]\to\mathbb{R}^2$ with $| γ'|≡ 1$. This metric is a regularization of the usual $L^2$ metric on curves, for which the submanifold geometry and geodesic equations have been analyzed already. The $H^1$ geodesic equation represents a limiting case of the Pochhammer-Chree equation from elasticity theory. We show the geodesic equation is $C^{\infty}$ in the Banach topology $C^1([0,1], \mathbb{R}^2)$, and thus there is a smooth Riemannian exponential map. Furthermore, if we hold one endpoint of the curves fixed, we have global-in-time solutions. We conclude with some surprising features in the periodic case, along with an analogy to the equations of incompressible fluid mechanics.
    Mathematics Subject Classification: 35G31, 35B44, 35B45, 35B65, 35Q74, 58J47, 58J90.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.

    [2]

    M. Bauer, M. Bruveris, P. Harms and P. W. MichorGeodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group, Preprint, arXiv:1105.0327.

    [3]

    L. Biliotti, The exponential map of a weak Riemannian Hilbert manifold, Illinois J. Math., 48 (2004), 1191-1206.

    [4]

    A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35 (2002), R51-R79.doi: 10.1088/0305-4470/35/32/201.

    [5]

    M. P. do Carmo, "Riemannian Geometry," Birkhäuser, Boston, 1992.

    [6]

    D. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force, Ann. Math. (2), 105 (1977), 141-200.

    [7]

    D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. (2), 92 (1970), 102-163.

    [8]

    J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation, Comm. Pure Appl. Analysis, 11 (2012), 1407-1419.doi: 10.3934/cpaa.2012.11.1407.

    [9]

    P. Hartman, "Ordinary Differential Equations," Wiley, New York, 1964.

    [10]

    T. Hou and C. Li, On global well-posedness of the Lagrangian averaged Euler equations, SIAM J. Math. Anal., 38 (2006), 782-794.doi: 10.1137/050625783.

    [11]

    S. Lang, "Fundamentals of Differential Geometry," Springer-Verlag, New York, 1999.doi: 10.1007/978-1-4612-0541-8.

    [12]

    J. E. Marsden, D. G. Ebin and A. E. Fischer, Diffeomorphism groups, hydrodynamics and relativity, Proc. Can. Math. Congress, 1 (1972), 135-279.

    [13]

    P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc., 8 (2006), 1-48.doi: 10.4171/JEMS/37.

    [14]

    G. Misiołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7.

    [15]

    S. C. Preston, The motion of whips and chains, J. Diff. Eq., 251 (2011), 504-550.doi: 10.1016/j.jde.2011.05.005.

    [16]

    S. C. Preston, The geometry of whips, Ann. Global Anal. Geom., 41 (2012), 281-305.doi: 10.1007/s10455-011-9283-z.

    [17]

    R. Saxton, Existence of solutions for a finite nonlinearly hyperelastic rod, J. Math. Anal. Appl., 105 (1985), 59-75.doi: 10.1016/0022-247X(85)90096-4.

    [18]

    S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics, J. Funct. Anal., 160 (1998), 337-365.doi: 10.1006/jfan.1998.3335.

    [19]

    A. Shnirelman, Generalized fluid flows, their approximation and applications, Geom. Funct. Anal., 4 (1994), 586-620.doi: 10.1007/BF01896409.

    [20]

    A. Thess, O. Zikanov and A. Nepomnyashchy, Finite-time singularity in the vortex dynamics of a string, Phys. Rev. E, 59 (1999), 3637-3640.doi: 10.1103/PhysRevE.59.3637.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return