May  2013, 33(5): 2105-2137. doi: 10.3934/dcds.2013.33.2105

Variational methods for non-local operators of elliptic type

1. 

Dipartimento di Matematica, Università della Calabria, Ponte Pietro Bucci 31 B, Arcavacata di Rende (Cosenza), 87036

2. 

Dipartimento di Matematica, Università di Milano, Via Cesare Saldini 50, 20133 Milano, Italy

Received  December 2011 Revised  September 2012 Published  December 2012

In this paper we study the existence of non-trivial solutions for equations driven by a non-local integrodifferential operator $\mathcal L_K$ with homogeneous Dirichlet boundary conditions. More precisely, we consider the problem $$ \left\{ \begin{array}{ll} \mathcal L_K u+\lambda u+f(x,u)=0        in   Ω \\ u=0                                 in   \mathbb{R}^n \backslash Ω , \end{array} \right. $$ where $\lambda$ is a real parameter and the nonlinear term $f$ satisfies superlinear and subcritical growth conditions at zero and at infinity. This equation has a variational nature, and so its solutions can be found as critical points of the energy functional $\mathcal J_\lambda$ associated to the problem. Here we get such critical points using both the Mountain Pass Theorem and the Linking Theorem, respectively when $\lambda<\lambda_1$ and $\lambda\geq \lambda_1$\,, where $\lambda_1$ denotes the first eigenvalue of the operator $-\mathcal L_K$. As a particular case, we derive an existence theorem for the following equation driven by the fractional Laplacian $$ \left\{ \begin{array}{ll} (-\Delta)^s u-\lambda u=f(x,u)        in   Ω \\ u=0                                in   \mathbb{R}^n \backslash Ω. \end{array} \right. $$ Thus, the results presented here may be seen as the extension of some classical nonlinear analysis theorems to the case of fractional operators.
Citation: Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.   Google Scholar

[2]

H. Brézis, "Analyse Fonctionelle. Théorie et Applications,", Masson, (1983).   Google Scholar

[3]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[4]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[5]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A., ().   Google Scholar

[6]

P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 215.   Google Scholar

[7]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math., (1986).   Google Scholar

[8]

R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar

[9]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, Rev. Mat. Iberoam., 29 (2013).   Google Scholar

[10]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[11]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, Trans. Amer. Math. Soc., ().   Google Scholar

[12]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 (1990).   Google Scholar

[13]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[14]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, 24 (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.   Google Scholar

[2]

H. Brézis, "Analyse Fonctionelle. Théorie et Applications,", Masson, (1983).   Google Scholar

[3]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[4]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[5]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A., ().   Google Scholar

[6]

P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 215.   Google Scholar

[7]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math., (1986).   Google Scholar

[8]

R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar

[9]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, Rev. Mat. Iberoam., 29 (2013).   Google Scholar

[10]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[11]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, Trans. Amer. Math. Soc., ().   Google Scholar

[12]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 (1990).   Google Scholar

[13]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[14]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, 24 (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[2]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[3]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[4]

Francesca Colasuonno, Fausto Ferrari. The Soap Bubble Theorem and a $ p $-Laplacian overdetermined problem. Communications on Pure & Applied Analysis, 2020, 19 (2) : 983-1000. doi: 10.3934/cpaa.2020045

[5]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[6]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[7]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[8]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[9]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

[10]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[11]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[12]

Jochen Brüning, Franz W. Kamber, Ken Richardson. The equivariant index theorem for transversally elliptic operators and the basic index theorem for Riemannian foliations. Electronic Research Announcements, 2010, 17: 138-154. doi: 10.3934/era.2010.17.138

[13]

Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095

[14]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[15]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[16]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

[17]

Shaoming Guo. Oscillatory integrals related to Carleson's theorem: fractional monomials. Communications on Pure & Applied Analysis, 2016, 15 (3) : 929-946. doi: 10.3934/cpaa.2016.15.929

[18]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[19]

Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857

[20]

Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]