    May  2013, 33(5): 2105-2137. doi: 10.3934/dcds.2013.33.2105

## Variational methods for non-local operators of elliptic type

 1 Dipartimento di Matematica, Università della Calabria, Ponte Pietro Bucci 31 B, Arcavacata di Rende (Cosenza), 87036 2 Dipartimento di Matematica, Università di Milano, Via Cesare Saldini 50, 20133 Milano, Italy

Received  December 2011 Revised  September 2012 Published  December 2012

In this paper we study the existence of non-trivial solutions for equations driven by a non-local integrodifferential operator $\mathcal L_K$ with homogeneous Dirichlet boundary conditions. More precisely, we consider the problem $\left\{ \begin{array}{ll} \mathcal L_K u+\lambda u+f(x,u)=0 in Ω \\ u=0 in \mathbb{R}^n \backslash Ω , \end{array} \right.$ where $\lambda$ is a real parameter and the nonlinear term $f$ satisfies superlinear and subcritical growth conditions at zero and at infinity. This equation has a variational nature, and so its solutions can be found as critical points of the energy functional $\mathcal J_\lambda$ associated to the problem. Here we get such critical points using both the Mountain Pass Theorem and the Linking Theorem, respectively when $\lambda<\lambda_1$ and $\lambda\geq \lambda_1$\,, where $\lambda_1$ denotes the first eigenvalue of the operator $-\mathcal L_K$. As a particular case, we derive an existence theorem for the following equation driven by the fractional Laplacian $\left\{ \begin{array}{ll} (-\Delta)^s u-\lambda u=f(x,u) in Ω \\ u=0 in \mathbb{R}^n \backslash Ω. \end{array} \right.$ Thus, the results presented here may be seen as the extension of some classical nonlinear analysis theorems to the case of fractional operators.
Citation: Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105
##### References:
  A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349. Google Scholar  H. Brézis, "Analyse Fonctionelle. Théorie et Applications,", Masson, (1983). Google Scholar  X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar  E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar  P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A., ().   Google Scholar  P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 215. Google Scholar  P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math., (1986). Google Scholar  R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar  R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, Rev. Mat. Iberoam., 29 (2013).   Google Scholar  R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar  R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, Trans. Amer. Math. Soc., ().   Google Scholar  M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 (1990). Google Scholar  J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar  M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, 24 (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

##### References:
  A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349. Google Scholar  H. Brézis, "Analyse Fonctionelle. Théorie et Applications,", Masson, (1983). Google Scholar  X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. Math., 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar  E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar  P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A., ().   Google Scholar  P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 215. Google Scholar  P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math., (1986). Google Scholar  R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar  R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, Rev. Mat. Iberoam., 29 (2013).   Google Scholar  R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar  R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, Trans. Amer. Math. Soc., ().   Google Scholar  M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 (1990). Google Scholar  J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar  M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, 24 (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar
  Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395  Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374  Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046  Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268  Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213  Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $p$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445  Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $p$-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293  Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007  Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469  Andrea Malchiodi. Perturbative techniques for the construction of spike-layers. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3767-3787. doi: 10.3934/dcds.2020055  Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033  Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263  Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036  Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185  Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054  Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004  Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032  Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170  Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455  Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

2019 Impact Factor: 1.338