\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Variational methods for non-local operators of elliptic type

Abstract Related Papers Cited by
  • In this paper we study the existence of non-trivial solutions for equations driven by a non-local integrodifferential operator $\mathcal L_K$ with homogeneous Dirichlet boundary conditions. More precisely, we consider the problem $$ \left\{ \begin{array}{ll} \mathcal L_K u+\lambda u+f(x,u)=0        in   Ω \\ u=0                                 in   \mathbb{R}^n \backslash Ω , \end{array} \right. $$ where $\lambda$ is a real parameter and the nonlinear term $f$ satisfies superlinear and subcritical growth conditions at zero and at infinity. This equation has a variational nature, and so its solutions can be found as critical points of the energy functional $\mathcal J_\lambda$ associated to the problem. Here we get such critical points using both the Mountain Pass Theorem and the Linking Theorem, respectively when $\lambda<\lambda_1$ and $\lambda\geq \lambda_1$\,, where $\lambda_1$ denotes the first eigenvalue of the operator $-\mathcal L_K$. As a particular case, we derive an existence theorem for the following equation driven by the fractional Laplacian $$ \left\{ \begin{array}{ll} (-\Delta)^s u-\lambda u=f(x,u)        in   Ω \\ u=0                                in   \mathbb{R}^n \backslash Ω. \end{array} \right. $$ Thus, the results presented here may be seen as the extension of some classical nonlinear analysis theorems to the case of fractional operators.
    Mathematics Subject Classification: Primary: 35A15, 35A16, 35R09, 35R11, 45K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.

    [2]

    H. Brézis, "Analyse Fonctionelle. Théorie et Applications," Masson, Paris, 1983.

    [3]

    X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.doi: 10.1016/j.aim.2010.01.025.

    [4]

    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.

    [5]

    P. Felmer, A. Quaas and J. TanPositive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A.

    [6]

    P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 215-223.

    [7]

    P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, American, Mathematical Society, Providence, RI (1986).

    [8]

    R. ServadeiThe Yamabe equation in a non-local setting, preprint, available at http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=12-40.

    [9]

    R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013).

    [10]

    R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.doi: 10.1016/j.jmaa.2011.12.032.

    [11]

    R. Servadei and E. ValdinociThe Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc.

    [12]

    M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems," Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Springer Verlag, Berlin-Heidelberg, 1990.

    [13]

    J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations, 36 (2011), 21-41.doi: 10.1007/s00526-010-0378-3.

    [14]

    M. Willem, "Minimax Theorems," Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, Boston, 1996.doi: 10.1007/978-1-4612-4146-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(552) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return