January  2013, 33(1): 211-223. doi: 10.3934/dcds.2013.33.211

Boundedness and stability for the damped and forced single well Duffing equation

1. 

UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France, France

Received  August 2011 Revised  January 2012 Published  September 2012

By using differential inequalities we improve some estimates of W.S. LOUD for the ultimate bound and asymptotic stability of the solutions to the Duffing equation $ u''+ c{u'} + g(u)= f(t)$ where $c>0$, $f $ is measurable and essentially bounded, and $g$ is continuously differentiable with $g'\ge b>0$.
Citation: Cyrine Fitouri, Alain Haraux. Boundedness and stability for the damped and forced single well Duffing equation. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 211-223. doi: 10.3934/dcds.2013.33.211
References:
[1]

L. Amerio, Soluzioni quasi periodiche, o limitate, di sistemi differenziali non lineari quasi periodici, o limitati, Ann. Mat. Pura. Appl., 39 (1955), 97-119.

[2]

M. Biroli, Sur les solutions bornés et presque péiodiques des éuations et inéuations d'éolution, Ann. Mat. Pura Appl., 93 (1972), 1-79.

[3]

M. L. Cartwright and J. E. Littlewood, On non-linear differential equations of the second order, Ann. Math., 48 (1947), 472-494.

[4]

C. M. Dafermos, Almost periodic processes and almost periodic solutions of evolution equations, in "Proccedings of a University of Florida International Symposium," Academic Press, 1977, 43-57.

[5]

C. Fitouri, "Thesis Dissertation," ch.2, University of Zürich, 2008.

[6]

C. Fitouri and A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations, J. Math. Pures Appl., 92 (2009), 313-321.

[7]

A. Haraux, "Nonlinear Evolution Equations: Global Behavior of Solutions," Springer-Verlag, New York, 1981.

[8]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Masson,Paris, 1991.

[9]

A. Haraux, On the double well Duffing equation with a small bounded forcing term, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.,29 (2005), 207-230.

[10]

A. Haraux, Sharp estimates of bounded solutions to some second-order forced dissipative equations, J. Dynam. Differential Equations, 19 (2007), 915-933.

[11]

W. S. Loud, On periodic solutions of Duffing's equation with damping, Journal of Mathematics and Physics,34 (1955), 173-178.

[12]

W. S. Loud, Boundedness and convergence of solutions of x''+cx' +g(x) = e(t), Duke Math. J., 24 (1957), 63-72.

[13]

W. S. Loud, Periodic solutions of x''+cx' +g(x) = f(t), Mem. Amer. Math. Soc., 31 (1959), 1-57.

[14]

Ph. Souplet, Uniqueness and nonuniqueness results for the antiperiodic solutions of some second-order nonlinear evolution equations, Nonlinear Analysis T.M.A., 26 (1996), 1511-1525. doi: 10.1016/0362-546X(95)00012-K.

show all references

References:
[1]

L. Amerio, Soluzioni quasi periodiche, o limitate, di sistemi differenziali non lineari quasi periodici, o limitati, Ann. Mat. Pura. Appl., 39 (1955), 97-119.

[2]

M. Biroli, Sur les solutions bornés et presque péiodiques des éuations et inéuations d'éolution, Ann. Mat. Pura Appl., 93 (1972), 1-79.

[3]

M. L. Cartwright and J. E. Littlewood, On non-linear differential equations of the second order, Ann. Math., 48 (1947), 472-494.

[4]

C. M. Dafermos, Almost periodic processes and almost periodic solutions of evolution equations, in "Proccedings of a University of Florida International Symposium," Academic Press, 1977, 43-57.

[5]

C. Fitouri, "Thesis Dissertation," ch.2, University of Zürich, 2008.

[6]

C. Fitouri and A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations, J. Math. Pures Appl., 92 (2009), 313-321.

[7]

A. Haraux, "Nonlinear Evolution Equations: Global Behavior of Solutions," Springer-Verlag, New York, 1981.

[8]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Masson,Paris, 1991.

[9]

A. Haraux, On the double well Duffing equation with a small bounded forcing term, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.,29 (2005), 207-230.

[10]

A. Haraux, Sharp estimates of bounded solutions to some second-order forced dissipative equations, J. Dynam. Differential Equations, 19 (2007), 915-933.

[11]

W. S. Loud, On periodic solutions of Duffing's equation with damping, Journal of Mathematics and Physics,34 (1955), 173-178.

[12]

W. S. Loud, Boundedness and convergence of solutions of x''+cx' +g(x) = e(t), Duke Math. J., 24 (1957), 63-72.

[13]

W. S. Loud, Periodic solutions of x''+cx' +g(x) = f(t), Mem. Amer. Math. Soc., 31 (1959), 1-57.

[14]

Ph. Souplet, Uniqueness and nonuniqueness results for the antiperiodic solutions of some second-order nonlinear evolution equations, Nonlinear Analysis T.M.A., 26 (1996), 1511-1525. doi: 10.1016/0362-546X(95)00012-K.

[1]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[2]

Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961

[3]

Yiqian Wang. Boundedness of solutions in a class of Duffing equations with a bounded restore force. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 783-800. doi: 10.3934/dcds.2006.14.783

[4]

Huiping Jin. Boundedness in a class of duffing equations with oscillating potentials via the twist theorem. Communications on Pure and Applied Analysis, 2011, 10 (1) : 179-192. doi: 10.3934/cpaa.2011.10.179

[5]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[6]

Zhaosheng Feng, Goong Chen, Sze-Bi Hsu. A qualitative study of the damped duffing equation and applications. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1097-1112. doi: 10.3934/dcdsb.2006.6.1097

[7]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[8]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[9]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[10]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[11]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[12]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[13]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[14]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[15]

Renato Manfrin. On the boundedness of solutions of the equation $u''+(1+f(t))u=0$. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 991-1008. doi: 10.3934/dcds.2009.23.991

[16]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[17]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198

[18]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064

[19]

Yu Ma, Chunlai Mu, Shuyan Qiu. Boundedness and asymptotic stability in a two-species predator-prey chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4077-4095. doi: 10.3934/dcdsb.2021218

[20]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]