May  2013, 33(5): 2211-2219. doi: 10.3934/dcds.2013.33.2211

Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow

1. 

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan, China

Received  December 2011 Revised  March 2012 Published  December 2012

We study the blowup criterion of smooth solution to the Oldroyd model. Let $(u(t,x), F(t,x)$ be a smooth solution in $[0,T)$, it is shown that the solution $(u(t,x), F(t,x)$ does not appear breakdown until $t=T$ provided $∇ u(t,x)∈ L^1([0,T]; L^∞(\mathbb{R}^n))$ for $n=2,3$.
Citation: Baoquan Yuan. Note on the blowup criterion of smooth solution to the incompressible viscoelastic flow. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2211-2219. doi: 10.3934/dcds.2013.33.2211
References:
[1]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66.

[2]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluid, SIAM J. Math. Anal., 33 (2001), 84-112. doi: 10.1137/S0036141099359317.

[3]

X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, Preprint, (). 

[4]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[5]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Rational Mech. Anal., 188 (2008), 371-398. doi: 10.1007/s00205-007-0089-x.

[6]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models, J. Differential Equations, 248 (2010), 328-341. doi: 10.1016/j.jde.2009.07.011.

[7]

F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471. doi: 10.1002/cpa.20074.

[8]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558. doi: 10.1002/cpa.20219.

[9]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Univ. Press, 2002.

[10]

C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations," $2^{nd}$ edition, Science Press, Beijing, 2004.

[11]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton Univ. Press, 1971.

[12]

L. G. Zhao, B. L. Guo and H. Y. Huang, Blow-up solutions to a viscoelastic fluid system and a coupled Navier-Stokes/phase-field system in $\mathbbR^2$, Chin. Phys. Lett., 28 (2011), 1-3. 060206.

show all references

References:
[1]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66.

[2]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluid, SIAM J. Math. Anal., 33 (2001), 84-112. doi: 10.1137/S0036141099359317.

[3]

X. P. Hu and R. Hynd, A blowup criterion for ideal viscelastic flow,, Preprint, (). 

[4]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[5]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Rational Mech. Anal., 188 (2008), 371-398. doi: 10.1007/s00205-007-0089-x.

[6]

Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models, J. Differential Equations, 248 (2010), 328-341. doi: 10.1016/j.jde.2009.07.011.

[7]

F. H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471. doi: 10.1002/cpa.20074.

[8]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558. doi: 10.1002/cpa.20219.

[9]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Univ. Press, 2002.

[10]

C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations," $2^{nd}$ edition, Science Press, Beijing, 2004.

[11]

E. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton Univ. Press, 1971.

[12]

L. G. Zhao, B. L. Guo and H. Y. Huang, Blow-up solutions to a viscoelastic fluid system and a coupled Navier-Stokes/phase-field system in $\mathbbR^2$, Chin. Phys. Lett., 28 (2011), 1-3. 060206.

[1]

Hua Qiu, Shaomei Fang. A BKM's criterion of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2014, 13 (2) : 823-833. doi: 10.3934/cpaa.2014.13.823

[2]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[3]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[4]

Colette Guillopé, Zaynab Salloum, Raafat Talhouk. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1001-1028. doi: 10.3934/dcdsb.2010.14.1001

[5]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[6]

Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic and Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51

[7]

Ruizhao Zi. Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6437-6470. doi: 10.3934/dcds.2017279

[8]

Baoquan Yuan, Guoquan Qin. A blowup criterion for the 2D $k$-$\varepsilon$ model equations for turbulent flows. Kinetic and Related Models, 2016, 9 (4) : 777-796. doi: 10.3934/krm.2016016

[9]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[10]

Matthias Hieber. Remarks on the theory of Oldroyd-B fluids in exterior domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1307-1313. doi: 10.3934/dcdss.2013.6.1307

[11]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic and Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[12]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

[13]

Fei Jiang. Stabilizing effect of elasticity on the motion of viscoelastic/elastic fluids. Electronic Research Archive, 2021, 29 (6) : 4051-4074. doi: 10.3934/era.2021071

[14]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure and Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[15]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[16]

Miroslav Bulíček, Eduard Feireisl, Josef Málek, Roman Shvydkoy. On the motion of incompressible inhomogeneous Euler-Korteweg fluids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 497-515. doi: 10.3934/dcdss.2010.3.497

[17]

Baoquan Yuan, Xiaokui Zhao. Blowup of smooth solutions to the full compressible MHD system with compact density. Kinetic and Related Models, 2014, 7 (1) : 195-203. doi: 10.3934/krm.2014.7.195

[18]

Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815

[19]

Paolo Secchi. An alpha model for compressible fluids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 351-359. doi: 10.3934/dcdss.2010.3.351

[20]

Bin Han, Na Zhao. Improved blow up criterion for the three dimensional incompressible magnetohydrodynamics system. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4455-4478. doi: 10.3934/cpaa.2020203

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]