-
Previous Article
Existence of smooth solutions to coupled chemotaxis-fluid equations
- DCDS Home
- This Issue
-
Next Article
Global dynamics for symmetric planar maps
Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle
1. | LPMA Université Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France |
2. | Department of Mathematics, Brigham Young University, Provo, UT 84602 |
References:
[1] |
M. Asaoka, Hyperbolic set exhibing $\mathcalC^1$-persistent homoclinic tangency for higher dimensions,, Proc. Am. Math. Soc., 136 (2008), 677.
doi: 10.1090/S0002-9939-07-09115-0. |
[2] |
J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic maps,, Ann. of Math. (2), 161 (2005), 1423.
doi: 10.4007/annals.2005.161.1423. |
[3] |
R. Bowen, Entropy-expansive maps,, Trans. Ame. Math. Soc., 164 (1972), 323.
|
[4] |
M. Boyle and T. Downarowicz, The entropy theory of symbolic extension,, Invent. Math., 156 (2004), 119.
doi: 10.1007/s00222-003-0335-2. |
[5] |
M. Boyle and T. Downarowicz, Symbolic extension entropy : $\mathcalC^r$ examples, products and flows,, Discrete Contin. Dyn. Syst., 16 (2006), 329.
doi: 10.3934/dcds.2006.16.329. |
[6] |
M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers,, Forum Math., 14 (2002), 713.
doi: 10.1515/form.2002.031. |
[7] |
D. Burguet, $\mathcalC^2$ surface diffeomorphism have symbolic extensions,, Invent. Math., 186 (2011), 191.
doi: 10.1007/s00222-011-0317-8. |
[8] |
D. Burguet, A direct proof of the variational principle for tail entropy and its extension to maps,, Ergodic Theory Dynam. Systems, 29 (2009), 357.
doi: 10.1017/S0143385708080425. |
[9] |
D. Burguet, Symbolic extension for $\mathcalC^r$ non uniformly entropy expanding maps,, Colloq. Math., 121 (2010), 129.
doi: 10.4064/cm121-1-12. |
[10] |
K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Ann. of Math. (2), 171 (2010), 451.
doi: 10.4007/annals.2010.171.451. |
[11] |
J. Buzzi, Intrinsic ergodicity for smooth interval maps,, Israel J. Math., 100 (1997), 125.
doi: 10.1007/BF02773637. |
[12] |
W. Cowieson and L.-S. Young, SRB mesaures as zero-noise limits,, Ergod. Th. Dynamic. Systems, 25 (2005), 1115.
doi: 10.1017/S0143385704000604. |
[13] |
L. J. Díaz and T. Fisher, Symbolic extensions and partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., 29 (2011), 1419.
doi: 10.3934/dcds.2011.29.1419. |
[14] |
L. J. Diaz, T. Fisher, M. J. Pacifico and J. L. Vieitez, Entropy-expansiveness for partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., (). Google Scholar |
[15] |
T. Downarowicz, "Entropy in Dynamical Systems, New Mathematical Monographs,", 18, 18 (2011).
doi: 10.1017/CBO9780511976155. |
[16] |
T. Downarowicz, Entropy structure,, J. Anal. Math., 96 (2005), 57.
doi: 10.1007/BF02787825. |
[17] |
T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions: the antarctic theorem,, Invent. Math., 176 (2009), 617.
doi: 10.1007/s00222-008-0172-4. |
[18] |
T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems,, Invent. Math., 160 (2005), 453.
doi: 10.1007/s00222-004-0413-0. |
[19] |
M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes In Mathematics, 583 (1977).
|
[20] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and Its Applications, 54 (1995).
|
[21] |
M. Misiurewicz, Topological conditional entropy,, Studia Math., 55 (1976), 175.
|
[22] |
S. Newhouse, Continuity properties of entropy,, Ann. of Math. (2), 129 (1989), 215.
doi: 10.2307/1971492. |
[23] |
V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 197.
|
[24] |
M. Pacifico and J. Vieitez, Entropy-expansiveness and domination for surface diffeomorphisms,, Rev. Mat. Complut., 21 (2008), 293.
|
[25] |
Y. Pesin and L. Barreira, "Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents,", Encyclopedia of Mathematics and Its Applications, 115 (2007).
|
[26] |
D. Ruelle, An inequality of the entropy of differentiable maps,, Bol. Soc. Brasil. Mat., 9 (1978), 83.
doi: 10.1007/BF02584795. |
[27] |
M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of A. Fathi and R. Langevin. Transl. by J. Cristy, (1987).
|
[28] |
P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).
|
[29] |
Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285.
doi: 10.1007/BF02766215. |
[30] |
Y. Yomdin, $\mathcalC^k$-resolution of semialgebraic mappings. Addendum to : "Volume growth and entropy",, Israel J. Math., 57 (1987), 301.
doi: 10.1007/BF02766216. |
show all references
References:
[1] |
M. Asaoka, Hyperbolic set exhibing $\mathcalC^1$-persistent homoclinic tangency for higher dimensions,, Proc. Am. Math. Soc., 136 (2008), 677.
doi: 10.1090/S0002-9939-07-09115-0. |
[2] |
J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic maps,, Ann. of Math. (2), 161 (2005), 1423.
doi: 10.4007/annals.2005.161.1423. |
[3] |
R. Bowen, Entropy-expansive maps,, Trans. Ame. Math. Soc., 164 (1972), 323.
|
[4] |
M. Boyle and T. Downarowicz, The entropy theory of symbolic extension,, Invent. Math., 156 (2004), 119.
doi: 10.1007/s00222-003-0335-2. |
[5] |
M. Boyle and T. Downarowicz, Symbolic extension entropy : $\mathcalC^r$ examples, products and flows,, Discrete Contin. Dyn. Syst., 16 (2006), 329.
doi: 10.3934/dcds.2006.16.329. |
[6] |
M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers,, Forum Math., 14 (2002), 713.
doi: 10.1515/form.2002.031. |
[7] |
D. Burguet, $\mathcalC^2$ surface diffeomorphism have symbolic extensions,, Invent. Math., 186 (2011), 191.
doi: 10.1007/s00222-011-0317-8. |
[8] |
D. Burguet, A direct proof of the variational principle for tail entropy and its extension to maps,, Ergodic Theory Dynam. Systems, 29 (2009), 357.
doi: 10.1017/S0143385708080425. |
[9] |
D. Burguet, Symbolic extension for $\mathcalC^r$ non uniformly entropy expanding maps,, Colloq. Math., 121 (2010), 129.
doi: 10.4064/cm121-1-12. |
[10] |
K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Ann. of Math. (2), 171 (2010), 451.
doi: 10.4007/annals.2010.171.451. |
[11] |
J. Buzzi, Intrinsic ergodicity for smooth interval maps,, Israel J. Math., 100 (1997), 125.
doi: 10.1007/BF02773637. |
[12] |
W. Cowieson and L.-S. Young, SRB mesaures as zero-noise limits,, Ergod. Th. Dynamic. Systems, 25 (2005), 1115.
doi: 10.1017/S0143385704000604. |
[13] |
L. J. Díaz and T. Fisher, Symbolic extensions and partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., 29 (2011), 1419.
doi: 10.3934/dcds.2011.29.1419. |
[14] |
L. J. Diaz, T. Fisher, M. J. Pacifico and J. L. Vieitez, Entropy-expansiveness for partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., (). Google Scholar |
[15] |
T. Downarowicz, "Entropy in Dynamical Systems, New Mathematical Monographs,", 18, 18 (2011).
doi: 10.1017/CBO9780511976155. |
[16] |
T. Downarowicz, Entropy structure,, J. Anal. Math., 96 (2005), 57.
doi: 10.1007/BF02787825. |
[17] |
T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions: the antarctic theorem,, Invent. Math., 176 (2009), 617.
doi: 10.1007/s00222-008-0172-4. |
[18] |
T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems,, Invent. Math., 160 (2005), 453.
doi: 10.1007/s00222-004-0413-0. |
[19] |
M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes In Mathematics, 583 (1977).
|
[20] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and Its Applications, 54 (1995).
|
[21] |
M. Misiurewicz, Topological conditional entropy,, Studia Math., 55 (1976), 175.
|
[22] |
S. Newhouse, Continuity properties of entropy,, Ann. of Math. (2), 129 (1989), 215.
doi: 10.2307/1971492. |
[23] |
V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 197.
|
[24] |
M. Pacifico and J. Vieitez, Entropy-expansiveness and domination for surface diffeomorphisms,, Rev. Mat. Complut., 21 (2008), 293.
|
[25] |
Y. Pesin and L. Barreira, "Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents,", Encyclopedia of Mathematics and Its Applications, 115 (2007).
|
[26] |
D. Ruelle, An inequality of the entropy of differentiable maps,, Bol. Soc. Brasil. Mat., 9 (1978), 83.
doi: 10.1007/BF02584795. |
[27] |
M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of A. Fathi and R. Langevin. Transl. by J. Cristy, (1987).
|
[28] |
P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982).
|
[29] |
Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285.
doi: 10.1007/BF02766215. |
[30] |
Y. Yomdin, $\mathcalC^k$-resolution of semialgebraic mappings. Addendum to : "Volume growth and entropy",, Israel J. Math., 57 (1987), 301.
doi: 10.1007/BF02766216. |
[1] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[2] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[3] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[4] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[5] |
Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004 |
[6] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[7] |
Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056 |
[8] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[9] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]