\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle

Abstract Related Papers Cited by
  • We relate the symbolic extension entropy of a partially hyperbolic dynamical system to the entropy appearing at small scales in local center manifolds. In particular, we prove the existence of symbolic extensions for $\mathcal{C}^2$ partially hyperbolic diffeomorphisms with a $2$-dimensional center bundle. 200 words.
    Mathematics Subject Classification: 37C05, 37C40, 37A35, 37D30, 37B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Asaoka, Hyperbolic set exhibing $\mathcalC^1$-persistent homoclinic tangency for higher dimensions, Proc. Am. Math. Soc., 136 (2008), 677-686.doi: 10.1090/S0002-9939-07-09115-0.

    [2]

    J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic maps, Ann. of Math. (2), 161 (2005), 1423-1485.doi: 10.4007/annals.2005.161.1423.

    [3]

    R. Bowen, Entropy-expansive maps, Trans. Ame. Math. Soc., 164 (1972), 323-331.

    [4]

    M. Boyle and T. Downarowicz, The entropy theory of symbolic extension, Invent. Math., 156 (2004), 119-161 .doi: 10.1007/s00222-003-0335-2.

    [5]

    M. Boyle and T. Downarowicz, Symbolic extension entropy : $\mathcalC^r$ examples, products and flows, Discrete Contin. Dyn. Syst., 16 (2006), 329-341.doi: 10.3934/dcds.2006.16.329.

    [6]

    M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math., 14 (2002), 713-757.doi: 10.1515/form.2002.031.

    [7]

    D. Burguet, $\mathcalC^2$ surface diffeomorphism have symbolic extensions, Invent. Math., 186 (2011), 191-236.doi: 10.1007/s00222-011-0317-8.

    [8]

    D. Burguet, A direct proof of the variational principle for tail entropy and its extension to maps, Ergodic Theory Dynam. Systems, 29 (2009), 357-369.doi: 10.1017/S0143385708080425.

    [9]

    D. Burguet, Symbolic extension for $\mathcalC^r$ non uniformly entropy expanding maps, Colloq. Math., 121 (2010), 129-151.doi: 10.4064/cm121-1-12.

    [10]

    K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math. (2), 171 (2010), 451-489.doi: 10.4007/annals.2010.171.451.

    [11]

    J. Buzzi, Intrinsic ergodicity for smooth interval maps, Israel J. Math., 100 (1997), 125-161.doi: 10.1007/BF02773637.

    [12]

    W. Cowieson and L.-S. Young, SRB mesaures as zero-noise limits, Ergod. Th. Dynamic. Systems, 25 (2005), 1115-1138.doi: 10.1017/S0143385704000604.

    [13]

    L. J. Díaz and T. Fisher, Symbolic extensions and partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., 29 (2011), 1419-1441.doi: 10.3934/dcds.2011.29.1419.

    [14]

    L. J. Diaz, T. Fisher, M. J. Pacifico and J. L. VieitezEntropy-expansiveness for partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., to appear, arXiv:1010.0721.

    [15]

    T. Downarowicz, "Entropy in Dynamical Systems, New Mathematical Monographs," 18, Cambridge University Press, Cambridge, 2011.doi: 10.1017/CBO9780511976155.

    [16]

    T. Downarowicz, Entropy structure, J. Anal. Math., 96 (2005), 57-116.doi: 10.1007/BF02787825.

    [17]

    T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions: the antarctic theorem, Invent. Math., 176 (2009), 617-636.doi: 10.1007/s00222-008-0172-4.

    [18]

    T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems, Invent. Math., 160 (2005), 453-499.doi: 10.1007/s00222-004-0413-0.

    [19]

    M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes In Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.

    [20]

    A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, Cambridge, 1995.

    [21]

    M. Misiurewicz, Topological conditional entropy, Studia Math., 55 (1976), 175-200.

    [22]

    S. Newhouse, Continuity properties of entropy, Ann. of Math. (2), 129 (1989), 215-235.doi: 10.2307/1971492.

    [23]

    V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 197-231.

    [24]

    M. Pacifico and J. Vieitez, Entropy-expansiveness and domination for surface diffeomorphisms, Rev. Mat. Complut., 21 (2008), 293-317.

    [25]

    Y. Pesin and L. Barreira, "Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents," Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, Cambridge, 2007.

    [26]

    D. Ruelle, An inequality of the entropy of differentiable maps, Bol. Soc. Brasil. Mat., 9 (1978), 83-87.doi: 10.1007/BF02584795.

    [27]

    M. Shub, "Global Stability of Dynamical Systems," With the collaboration of A. Fathi and R. Langevin. Transl. by J. Cristy, Springer-Verlag, New York, 1987.

    [28]

    P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

    [29]

    Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.doi: 10.1007/BF02766215.

    [30]

    Y. Yomdin, $\mathcalC^k$-resolution of semialgebraic mappings. Addendum to : "Volume growth and entropy", Israel J. Math., 57 (1987), 301-317.doi: 10.1007/BF02766216.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return