June  2013, 33(6): 2319-2347. doi: 10.3934/dcds.2013.33.2319

Schauder estimates for a class of non-local elliptic equations

1. 

Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912

2. 

Department of Applied Mathematics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea

Received  January 2012 Revised  May 2012 Published  December 2012

We prove Schauder estimates for a class of non-local elliptic operators with kernel $K(y)=a(y)/|y|^{d+\sigma}$ and either Dini or Hölder continuous data. Here $0 < \sigma < 2$ is a constant and $a$ is a bounded measurable function, which is not necessarily to be homogeneous, regular, or symmetric. As an application, we prove that the operators give isomorphisms between the Lipschitz--Zygmund spaces $\Lambda^{\alpha+\sigma}$ and $\Lambda^\alpha$ for any $\alpha>0$. Several local estimates and an extension to operators with kernels $K(x,y)$ are also discussed.
Citation: Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319
References:
[1]

H. Abels and M. Kassmann, The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels,, Osaka J. Math., 46 (2009), 661.   Google Scholar

[2]

R. F. Bass, Regularity results for stable-like operators,, J. Funct. Anal., 257 (2009), 2693.  doi: 10.1016/j.jfa.2009.05.012.  Google Scholar

[3]

R. F. Bass and M. Kassmann, Harnack inequalities for non-local operators of variable order,, Trans. Amer. Math. Soc., 357 (2005), 837.  doi: 10.1090/S0002-9947-04-03549-4.  Google Scholar

[4]

R. F. Bass and M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order,, Comm. Partial Differential Equations, 30 (2005), 1249.  doi: 10.1080/03605300500257677.  Google Scholar

[5]

R. F. Bass and D. A. Levin, Harnack inequalities for jump processes,, Potential Anal., 17 (2002), 375.  doi: 10.1023/A:1016378210944.  Google Scholar

[6]

G. Barles, E. Chasseigne and C. Imbert, Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations,, J. Eur. Math. Soc., 13 (2011), 1.  doi: 10.4171/JEMS/242.  Google Scholar

[7]

L. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,", American Mathematical Society, (1995).   Google Scholar

[8]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation,, Arch. Ration. Mech. Anal., 200 (2011), 59.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[10]

H. Dong and D. Kim, On $L_p$-estimates for a class of non-local elliptic equations,, J. Funct. Anal., 262 (2012), 1166.  doi: 10.1016/j.jfa.2011.11.002.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 ed. Springer-Verlag, (1998).   Google Scholar

[12]

N. Jacob, "Pseudo Differential Operators and Markov Processes. Vol. I. Fourier Analysis and Semigroups,", Imperial College Press, (2001).  doi: 10.1142/9781860949746.  Google Scholar

[13]

N. Jacob, "Pseudo Differential Operators and Markov Processes. Vol. II. Generators and Their Potential Theory,", Imperial College Press, (2001).  doi: 10.1142/9781860949562.  Google Scholar

[14]

M. Kassmann, A priori estimates for integro-differential operators with measurable kernels,, Calc. Var. Partial Differential Equations, 34 (2009), 1.  doi: 10.1007/s00526-008-0173-6.  Google Scholar

[15]

Y. Kim and K. Lee, Regularity results for fully nonlinear integro-differential operators with nonsymmetric positive kernels,, Manuscripta Math., 139 (2012), 291.   Google Scholar

[16]

N. V. Krylov, "Lectures on Elliptic and Parabolic Equations in Hölder Spaces,", American Mathematical Society, (1996).   Google Scholar

[17]

G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996).   Google Scholar

[18]

R. Mikulevicius and H. Pragarauskas, On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces,, Liet. Mat. Rink., 32 (1992), 299.  doi: 10.1007/BF02450422.  Google Scholar

[19]

R. Mikulevicius and H. Pragarauskas, On Hölder solutions of the integro-differential Zakai equation,, Stochastic Process. Appl., 119 (2009), 3319.  doi: 10.1016/j.spa.2009.05.008.  Google Scholar

[20]

R. Mikulevicius and H. Pragarauskas, On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the corresponding martingale problem,, preprint, ().   Google Scholar

[21]

L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional laplace,, Indiana Univ. Math. J., 55 (2006), 1155.  doi: 10.1512/iumj.2006.55.2706.  Google Scholar

[22]

E. Sperner, Schauder's existence theorem for $\alpha$-Dini continuous data,, Ark. Mat., 19 (1981), 193.  doi: 10.1007/BF02384477.  Google Scholar

[23]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970).   Google Scholar

[24]

E. M. Stein, "Harmonic Analysis: Real-Variable Methods Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[25]

X.-J. Wang, Schauder estimates for elliptic and parabolic equations,, Chinese Ann. Math. Ser. B, 27 (2006), 637.  doi: 10.1007/s11401-006-0142-3.  Google Scholar

show all references

References:
[1]

H. Abels and M. Kassmann, The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels,, Osaka J. Math., 46 (2009), 661.   Google Scholar

[2]

R. F. Bass, Regularity results for stable-like operators,, J. Funct. Anal., 257 (2009), 2693.  doi: 10.1016/j.jfa.2009.05.012.  Google Scholar

[3]

R. F. Bass and M. Kassmann, Harnack inequalities for non-local operators of variable order,, Trans. Amer. Math. Soc., 357 (2005), 837.  doi: 10.1090/S0002-9947-04-03549-4.  Google Scholar

[4]

R. F. Bass and M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order,, Comm. Partial Differential Equations, 30 (2005), 1249.  doi: 10.1080/03605300500257677.  Google Scholar

[5]

R. F. Bass and D. A. Levin, Harnack inequalities for jump processes,, Potential Anal., 17 (2002), 375.  doi: 10.1023/A:1016378210944.  Google Scholar

[6]

G. Barles, E. Chasseigne and C. Imbert, Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations,, J. Eur. Math. Soc., 13 (2011), 1.  doi: 10.4171/JEMS/242.  Google Scholar

[7]

L. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations,", American Mathematical Society, (1995).   Google Scholar

[8]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation,, Arch. Ration. Mech. Anal., 200 (2011), 59.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[10]

H. Dong and D. Kim, On $L_p$-estimates for a class of non-local elliptic equations,, J. Funct. Anal., 262 (2012), 1166.  doi: 10.1016/j.jfa.2011.11.002.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 ed. Springer-Verlag, (1998).   Google Scholar

[12]

N. Jacob, "Pseudo Differential Operators and Markov Processes. Vol. I. Fourier Analysis and Semigroups,", Imperial College Press, (2001).  doi: 10.1142/9781860949746.  Google Scholar

[13]

N. Jacob, "Pseudo Differential Operators and Markov Processes. Vol. II. Generators and Their Potential Theory,", Imperial College Press, (2001).  doi: 10.1142/9781860949562.  Google Scholar

[14]

M. Kassmann, A priori estimates for integro-differential operators with measurable kernels,, Calc. Var. Partial Differential Equations, 34 (2009), 1.  doi: 10.1007/s00526-008-0173-6.  Google Scholar

[15]

Y. Kim and K. Lee, Regularity results for fully nonlinear integro-differential operators with nonsymmetric positive kernels,, Manuscripta Math., 139 (2012), 291.   Google Scholar

[16]

N. V. Krylov, "Lectures on Elliptic and Parabolic Equations in Hölder Spaces,", American Mathematical Society, (1996).   Google Scholar

[17]

G. M. Lieberman, "Second Order Parabolic Differential Equations,", World Scientific Publishing Co., (1996).   Google Scholar

[18]

R. Mikulevicius and H. Pragarauskas, On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces,, Liet. Mat. Rink., 32 (1992), 299.  doi: 10.1007/BF02450422.  Google Scholar

[19]

R. Mikulevicius and H. Pragarauskas, On Hölder solutions of the integro-differential Zakai equation,, Stochastic Process. Appl., 119 (2009), 3319.  doi: 10.1016/j.spa.2009.05.008.  Google Scholar

[20]

R. Mikulevicius and H. Pragarauskas, On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the corresponding martingale problem,, preprint, ().   Google Scholar

[21]

L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional laplace,, Indiana Univ. Math. J., 55 (2006), 1155.  doi: 10.1512/iumj.2006.55.2706.  Google Scholar

[22]

E. Sperner, Schauder's existence theorem for $\alpha$-Dini continuous data,, Ark. Mat., 19 (1981), 193.  doi: 10.1007/BF02384477.  Google Scholar

[23]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Mathematical Series, (1970).   Google Scholar

[24]

E. M. Stein, "Harmonic Analysis: Real-Variable Methods Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[25]

X.-J. Wang, Schauder estimates for elliptic and parabolic equations,, Chinese Ann. Math. Ser. B, 27 (2006), 637.  doi: 10.1007/s11401-006-0142-3.  Google Scholar

[1]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[9]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[12]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[13]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[20]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (26)

Other articles
by authors

[Back to Top]