\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the stability of standing waves of Klein-Gordon equations in a semiclassical regime

Abstract Related Papers Cited by
  • We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.
    Mathematics Subject Classification: 35D99, 35J62, 58E05, 35J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth, Comm. Partial Differential Equations, 36 (2011), 797-818.doi: 10.1080/03605302.2010.534684.

    [2]

    A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 140 (1997), 285-300.doi: 10.1007/s002050050067.

    [3]

    A. Ambrosetti and A. Malchiodi, "Perturbation Methods and Semilinear Elliptic Problems on $R^n$," 240 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2006.

    [4]

    A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal., 35 (2010), 33-42.

    [5]

    M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential, Comm. Partial Differential Equations, 18 (1993), 1365-1397.doi: 10.1080/03605309308820977.

    [6]

    V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.doi: 10.1142/S0129055X02001168.

    [7]

    H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sé. I Math., 293 (1981), 489-492.

    [8]

    F. A. Berezin and M. A. Shubin, "The Schrödinger Equation," 66 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991.doi: 10.1007/978-94-011-3154-4.

    [9]

    T. Cazenave, "Semilinear Schrödinger Equations," New York University - Courant Institute, New York, 2003.

    [10]

    T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.

    [11]

    S. Cuccagna, On the local existence for the Maxwell-Klein-Gordon system in $\R^{3+1}$, Comm. Partial Differential Equations, 24 (1999), 851-867.doi: 10.1080/03605309908821449.

    [12]

    T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.doi: 10.1017/S030821050000353X.

    [13]

    E. Deumens, The Klein-Gordon-Maxwell nonlinear systems of equations, Phys. D, 18 (1986), 371-373. Solitons and coherent structures (Santa Barbara, Calif., 1985).doi: 10.1016/0167-2789(86)90201-0.

    [14]

    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations," Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1982.

    [15]

    M. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), 160-197.doi: 10.1016/0022-1236(87)90044-9.

    [16]

    ______, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal., 94 (1990), 308-348.

    [17]

    I. Ianni and S. Le Coz, Orbital stability of standing waves of a semiclassical nonlinear Schrödinger-Poisson equation, Adv. Differential Equations, 14 (2009), 717-748.

    [18]

    L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840.

    [19]

    ______, Instability for standing waves of nonlinear Klein-Gordon equations via mountain-pass arguments, Trans. Amer. Math. Soc., 361 (2009), 5401-5416.

    [20]

    M. Keel, T. Roy and T. Tao, Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm, Discrete Contin. Dyn. Syst., 30 (2011), 573-621.doi: 10.3934/dcds.2011.30.573.

    [21]

    S. Le Coz, Standing waves in nonlinear Schrödinger equations, in "Analytical and Numerical Aspects of Partial Differential Equations" Walter de Gruyter, Berlin, (2009), 151-192.

    [22]

    S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Phys. D, 237 (2008), 1103-1128.doi: 10.1016/j.physd.2007.12.004.

    [23]

    T.-C. Lin and J. Wei, Orbital stability of bound states of semiclassical nonlinear Schrödinger equations with critical nonlinearity, SIAM J. Math. Anal., 40 (2008), 365-381.doi: 10.1137/070683842.

    [24]

    Y. Liu, M. Ohta and G. Todorova, Instabilité forte d'ondes solitaires pour des équations de Klein-Gordon non linéaires et des équations généralisées de Boussinesq, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 539-548.doi: 10.1016/j.anihpc.2006.03.005.

    [25]

    E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-Maxwell system and the Lorentz force law, Rev. Math. Phys., 21 (2009), 459-510.doi: 10.1142/S0129055X09003669.

    [26]

    Y.-G. Oh, Stability of semiclassical bound states of nonlinear Schr\"odinger equations with potentials, Comm. Math. Phys., 121 (1989), 11-33.

    [27]

    M. Ohta and G. Todorova, Strong instability of standing waves for nonlinear Klein-Gordon equations, Discrete Contin. Dyn. Syst., 12 (2005), 315-322.doi: 10.1137/050643015.

    [28]

    ______, Instability of standing waves for nonlinear Klein-Gordon equation and related system, in "Nonlinear Dispersive Equations" 26 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakkötosho, Tokyo, (2006), 189-200.

    [29]

    ______, Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system, SIAM J. Math. Anal., 38 (2007), 1912-1931 (electronic).

    [30]

    J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc., 290 (1985), 701-710.doi: 10.2307/2000308.

    [31]

    J. Shatah and W. A. Strauss, Instability of nonlinear bound states, Comm. Math. Phys., 100 (1985), 173-190.

    [32]

    C. D. Sogge, Lectures on non-linear wave equations, International Press, Boston, MA, second ed., (2008).

    [33]

    C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation, Milan J. Math., 76 (2008), 329-399.doi: 10.1007/s00032-008-0089-9.

    [34]

    D. M. A. Stuart, Modulational approach to stability of non-topological solitons in semilinear wave equations, J. Math. Pures Appl. (9), 80 (2001), 51-83.doi: 10.1016/S0021-7824(00)01189-2.

    [35]

    T. Tao, Why are solitons stable?, Bull. Amer. Math. Soc., 46 (2009), 1-33.doi: 10.1090/S0273-0979-08-01228-7.

    [36]

    G. Vaira, Semiclassical states for the nonlinear Klein-Gordon-Maxwell system, J. Pure Appl. Math. Adv. Appl., 4 (2010), 59-95.

    [37]

    M. I. WeinsteinNonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.

    [38]

    M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.doi: 10.1137/0516034.

    [39]

    Y. Yu, Vortex dynamics for the nonlinear Maxwell-Klein-Gordon equation, Arch. Ration. Mech. Anal., 201 (2011), 743-776.doi: 10.1007/s00205-011-0422-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return