June  2013, 33(6): 2403-2421. doi: 10.3934/dcds.2013.33.2403

Rényi entropy and recurrence

1. 

Mathematics Department, USC, Los Angeles, CA 90089-1113, United States

Received  February 2012 Revised  July 2012 Published  December 2012

This paper studies the relationship between the return time $\tau_n$ and the Rényi Entropy Function of order $s$, $R(s)$. For a dynamical system with an invariant $\alpha$-mixing measure $\mu$ and a measurable partition, we consider the sum $W$ of measures of cylinders along orbit segments of length $\tau_n$ and relate that growth/decay rate to the R$\acute{\textrm{e}}$nyi Entropy. The key strategy is to introduce the hitting number $\nu_x(A) = | \{1 \leq i \leq \tau_n(x) : T^i(x) \in A\}|$, the number of times that $x$ hits the set $A$ when $x$ travels along its orbit of length $\tau_n(x)$, and write $W=\sum \nu_x(A) \mu(A)^s$, where the sum is taken over the $n$-cylinders. Then we show that $\nu_x(A) \approx \exp(n h_{\mu}) \mu(A)$ for most $n$-cylinders $A$. Hence $W \approx \exp(nh_{\mu}) \sum \mu(A)^{1+s}$, which relates $\tau_n(x)$ to $R(s)$, as the sum $\sum \mu(A)^{1+s} \approx \exp(-nsR(s))$.
Citation: Milton Ko. Rényi entropy and recurrence. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403
References:
[1]

K. Agyem, J. M. Arbeit, R. W. Fuhrhop, M. S. Hughes, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, Application of rényi entropy for Ultrasonic molecular imaging,, Journal of the Acoustical Society of Americal, 125 (2009), 3141.   Google Scholar

[2]

K. Agyem, J. M. Arbeit, R. W. Fuhrhop, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, "Application of Rényi Entropy to Detect Subtle Changes in Scattering Architecture,", 2008. Available from: , ().   Google Scholar

[3]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Springer Lecture Notes in Mathematics 470., ().   Google Scholar

[4]

V. M. Deschamps, B. Schmitt, M. Urbanski and A. Zdunik, Pressure and recurrence,, Fund. Math., 178 (2003), 129.  doi: 10.4064/fm178-2-3.  Google Scholar

[5]

N. Haydn and S Vaienti, The rényi entropy function and the large deviation of short return times,, Ergodic Theory and Dynamical System, 39 (2010), 159.  doi: 10.1017/S0143385709000030.  Google Scholar

[6]

J. Baez, "Rényi Entropy and Free Energy,", 2011. Available from: , ().   Google Scholar

[7]

R. Mañé, "Ergodic Theory and Differential Dynamics,", Springer, (1985).   Google Scholar

[8]

D. Ornstein and B. Weiss, Entropy and data compression schemes,, IEEE Trans. Inf. Theory, 39 (1993), 78.  doi: 10.1109/18.179344.  Google Scholar

[9]

D. Ornstein and B. Weiss, Entropy and recurrence rates for stationary random fields,, IEEE Trans. Inf. Theory, 48 (1993), 1694.  doi: 10.1109/TIT.2002.1003848.  Google Scholar

[10]

A. Rényi, On measures of entropy and information,, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1 (1961), 547.   Google Scholar

[11]

F. Takens and E. Verbitsky, Generalised entropies, rényi and correlation integral approach,, Nonlinearity, 4 (1998), 771.  doi: 10.1088/0951-7715/11/4/001.  Google Scholar

show all references

References:
[1]

K. Agyem, J. M. Arbeit, R. W. Fuhrhop, M. S. Hughes, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, Application of rényi entropy for Ultrasonic molecular imaging,, Journal of the Acoustical Society of Americal, 125 (2009), 3141.   Google Scholar

[2]

K. Agyem, J. M. Arbeit, R. W. Fuhrhop, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, "Application of Rényi Entropy to Detect Subtle Changes in Scattering Architecture,", 2008. Available from: , ().   Google Scholar

[3]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Springer Lecture Notes in Mathematics 470., ().   Google Scholar

[4]

V. M. Deschamps, B. Schmitt, M. Urbanski and A. Zdunik, Pressure and recurrence,, Fund. Math., 178 (2003), 129.  doi: 10.4064/fm178-2-3.  Google Scholar

[5]

N. Haydn and S Vaienti, The rényi entropy function and the large deviation of short return times,, Ergodic Theory and Dynamical System, 39 (2010), 159.  doi: 10.1017/S0143385709000030.  Google Scholar

[6]

J. Baez, "Rényi Entropy and Free Energy,", 2011. Available from: , ().   Google Scholar

[7]

R. Mañé, "Ergodic Theory and Differential Dynamics,", Springer, (1985).   Google Scholar

[8]

D. Ornstein and B. Weiss, Entropy and data compression schemes,, IEEE Trans. Inf. Theory, 39 (1993), 78.  doi: 10.1109/18.179344.  Google Scholar

[9]

D. Ornstein and B. Weiss, Entropy and recurrence rates for stationary random fields,, IEEE Trans. Inf. Theory, 48 (1993), 1694.  doi: 10.1109/TIT.2002.1003848.  Google Scholar

[10]

A. Rényi, On measures of entropy and information,, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1 (1961), 547.   Google Scholar

[11]

F. Takens and E. Verbitsky, Generalised entropies, rényi and correlation integral approach,, Nonlinearity, 4 (1998), 771.  doi: 10.1088/0951-7715/11/4/001.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[4]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[5]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[6]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[7]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[8]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[9]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[17]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[18]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[19]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]