June  2013, 33(6): 2403-2421. doi: 10.3934/dcds.2013.33.2403

Rényi entropy and recurrence

1. 

Mathematics Department, USC, Los Angeles, CA 90089-1113, United States

Received  February 2012 Revised  July 2012 Published  December 2012

This paper studies the relationship between the return time $\tau_n$ and the Rényi Entropy Function of order $s$, $R(s)$. For a dynamical system with an invariant $\alpha$-mixing measure $\mu$ and a measurable partition, we consider the sum $W$ of measures of cylinders along orbit segments of length $\tau_n$ and relate that growth/decay rate to the R$\acute{\textrm{e}}$nyi Entropy. The key strategy is to introduce the hitting number $\nu_x(A) = | \{1 \leq i \leq \tau_n(x) : T^i(x) \in A\}|$, the number of times that $x$ hits the set $A$ when $x$ travels along its orbit of length $\tau_n(x)$, and write $W=\sum \nu_x(A) \mu(A)^s$, where the sum is taken over the $n$-cylinders. Then we show that $\nu_x(A) \approx \exp(n h_{\mu}) \mu(A)$ for most $n$-cylinders $A$. Hence $W \approx \exp(nh_{\mu}) \sum \mu(A)^{1+s}$, which relates $\tau_n(x)$ to $R(s)$, as the sum $\sum \mu(A)^{1+s} \approx \exp(-nsR(s))$.
Citation: Milton Ko. Rényi entropy and recurrence. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403
References:
[1]

K. Agyem, J. M. Arbeit, R. W. Fuhrhop, M. S. Hughes, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, Application of rényi entropy for Ultrasonic molecular imaging,, Journal of the Acoustical Society of Americal, 125 (2009), 3141. Google Scholar

[2]

K. Agyem, J. M. Arbeit, R. W. Fuhrhop, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, "Application of Rényi Entropy to Detect Subtle Changes in Scattering Architecture,", 2008. Available from: , (). Google Scholar

[3]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Springer Lecture Notes in Mathematics 470., (). Google Scholar

[4]

V. M. Deschamps, B. Schmitt, M. Urbanski and A. Zdunik, Pressure and recurrence,, Fund. Math., 178 (2003), 129. doi: 10.4064/fm178-2-3. Google Scholar

[5]

N. Haydn and S Vaienti, The rényi entropy function and the large deviation of short return times,, Ergodic Theory and Dynamical System, 39 (2010), 159. doi: 10.1017/S0143385709000030. Google Scholar

[6]

J. Baez, "Rényi Entropy and Free Energy,", 2011. Available from: , (). Google Scholar

[7]

R. Mañé, "Ergodic Theory and Differential Dynamics,", Springer, (1985). Google Scholar

[8]

D. Ornstein and B. Weiss, Entropy and data compression schemes,, IEEE Trans. Inf. Theory, 39 (1993), 78. doi: 10.1109/18.179344. Google Scholar

[9]

D. Ornstein and B. Weiss, Entropy and recurrence rates for stationary random fields,, IEEE Trans. Inf. Theory, 48 (1993), 1694. doi: 10.1109/TIT.2002.1003848. Google Scholar

[10]

A. Rényi, On measures of entropy and information,, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1 (1961), 547. Google Scholar

[11]

F. Takens and E. Verbitsky, Generalised entropies, rényi and correlation integral approach,, Nonlinearity, 4 (1998), 771. doi: 10.1088/0951-7715/11/4/001. Google Scholar

show all references

References:
[1]

K. Agyem, J. M. Arbeit, R. W. Fuhrhop, M. S. Hughes, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, Application of rényi entropy for Ultrasonic molecular imaging,, Journal of the Acoustical Society of Americal, 125 (2009), 3141. Google Scholar

[2]

K. Agyem, J. M. Arbeit, R. W. Fuhrhop, G. M. Lanza, J. E. McCarthy, J. N. Marsh, R. G. Neumann, J. Smith, T. Thomas, K. D. Wallace and S. A. Wickline, "Application of Rényi Entropy to Detect Subtle Changes in Scattering Architecture,", 2008. Available from: , (). Google Scholar

[3]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Springer Lecture Notes in Mathematics 470., (). Google Scholar

[4]

V. M. Deschamps, B. Schmitt, M. Urbanski and A. Zdunik, Pressure and recurrence,, Fund. Math., 178 (2003), 129. doi: 10.4064/fm178-2-3. Google Scholar

[5]

N. Haydn and S Vaienti, The rényi entropy function and the large deviation of short return times,, Ergodic Theory and Dynamical System, 39 (2010), 159. doi: 10.1017/S0143385709000030. Google Scholar

[6]

J. Baez, "Rényi Entropy and Free Energy,", 2011. Available from: , (). Google Scholar

[7]

R. Mañé, "Ergodic Theory and Differential Dynamics,", Springer, (1985). Google Scholar

[8]

D. Ornstein and B. Weiss, Entropy and data compression schemes,, IEEE Trans. Inf. Theory, 39 (1993), 78. doi: 10.1109/18.179344. Google Scholar

[9]

D. Ornstein and B. Weiss, Entropy and recurrence rates for stationary random fields,, IEEE Trans. Inf. Theory, 48 (1993), 1694. doi: 10.1109/TIT.2002.1003848. Google Scholar

[10]

A. Rényi, On measures of entropy and information,, Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., 1 (1961), 547. Google Scholar

[11]

F. Takens and E. Verbitsky, Generalised entropies, rényi and correlation integral approach,, Nonlinearity, 4 (1998), 771. doi: 10.1088/0951-7715/11/4/001. Google Scholar

[1]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[2]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[3]

Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339

[4]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[5]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[6]

Yunmei Chen, Jiangli Shi, Murali Rao, Jin-Seop Lee. Deformable multi-modal image registration by maximizing Rényi's statistical dependence measure. Inverse Problems & Imaging, 2015, 9 (1) : 79-103. doi: 10.3934/ipi.2015.9.79

[7]

Tim Gutjahr, Karsten Keller. Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4207-4224. doi: 10.3934/dcds.2019170

[8]

Jean-René Chazottes, Renaud Leplaideur. Fluctuations of the nth return time for Axiom A diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 399-411. doi: 10.3934/dcds.2005.13.399

[9]

Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

[10]

Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011

[11]

Marco Lenci. Uniformly expanding Markov maps of the real line: Exactness and infinite mixing. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3867-3903. doi: 10.3934/dcds.2017163

[12]

Arnaud Goullet, Ian Glasgow, Nadine Aubry. Dynamics of microfluidic mixing using time pulsing. Conference Publications, 2005, 2005 (Special) : 327-336. doi: 10.3934/proc.2005.2005.327

[13]

Daniel Glasscock, Andreas Koutsogiannis, Florian Karl Richter. Multiplicative combinatorial properties of return time sets in minimal dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5891-5921. doi: 10.3934/dcds.2019258

[14]

Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721

[15]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[16]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[17]

Jérôme Buzzi, Véronique Maume-Deschamps. Decay of correlations on towers with non-Hölder Jacobian and non-exponential return time. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 639-656. doi: 10.3934/dcds.2005.12.639

[18]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

[19]

Mike Boyle, Tomasz Downarowicz. Symbolic extension entropy: $c^r$ examples, products and flows. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 329-341. doi: 10.3934/dcds.2006.16.329

[20]

Mikko Pelto. On $(r,\leq 2)$-locating-dominating codes in the infinite king grid. Advances in Mathematics of Communications, 2012, 6 (1) : 27-38. doi: 10.3934/amc.2012.6.27

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]