Citation: |
[1] |
Dawoud Ahmadi Dastjerdi and Maliheh Dabbaghian Amiri, Characterization of entropy for spacing shifts, Acta Math. Univ. Comenianae, LXXXI (2012), 221-226. |
[2] |
Ethan Akin and Sergii Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.doi: 10.1088/0951-7715/16/4/313. |
[3] |
F. Balibrea, J. Smítal and M. vStefánková, The three versions of distributional chaos, Chaos Solitons Fractals, 23 (2005), 1581-1583.doi: 10.1016/j.chaos.2004.06.011. |
[4] |
John Banks, Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems, 17 (1997), 505-529.doi: 10.1017/S0143385797069885. |
[5] |
J. Banks, T. T. D. Nguyen, P. Oprocha and B. Trotta, Dynamics of spacing shifts, Discrete Continuous Dynam. Systems - A, to appear. |
[6] |
Vitaly Bergelson, Ergodic Ramsey theory, Logic and combinatorics (Arcata, Calif., 1985), 63-87, Contemp. Math., 65, Amer. Math. Soc., Providence, RI, (1987).doi: 10.1090/conm/065/891243. |
[7] |
A. Blokh and A. Fieldsteel, Sets that force recurrence, Proc. Amer. Math. Soc., 130 (2002), 3571-3578.doi: 10.1090/S0002-9939-02-06349-9. |
[8] |
Tomasz Downarowicz, Positive topological entropy implies chaos DC$2$, to appear in Proc. Amer. Math. Soc., arXiv:1110.5201v1, (2011).doi: 10.1017/CBO9780511976155. |
[9] |
Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49. |
[10] |
Harry Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory," Princeton University Press, Princeton, N.J., (1981), xi+203 pp. |
[11] |
Harry Furstenberg, Poincaré recurrence and number theory, Bull. Amer. Math. Soc. (N.S.), 5 (1981), 211-234.doi: 10.1090/S0273-0979-1981-14932-6. |
[12] |
L. Wayne Goodwyn, Some counter-examples in topological entropy, Topology, 11 (1972), 377-385. |
[13] |
Wen Huang, Hanfeng Li and Xiangdong Ye, Family-independence for topological and measurable dynamics, Trans. Amer. Math Soc., 364 (2012), 5209-5245.doi: 10.1090/S0002-9947-2012-05493-6. |
[14] |
Víctor Jiménez López and L'ubomir Snoha, Stroboscopical property, equicontinuity and weak mixing, Iteration theory (ECIT '02), 235-244, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, (2004). |
[15] |
David Kerr and Hanfeng Li, Independence in topological and $C*$-dynamics, Math. Ann., 338 (2007), 869-926.doi: 10.1007/s00208-007-0097-z. |
[16] |
Igor Kříž, Large independent sets in shift-invariant graphs: solution of Bergelson's problem, Graphs Combin., 3 (1987), 145-158.doi: 10.1007/BF01788538. |
[17] |
Dominik Kwietniak and Piotr Oprocha, On weak mixing, minimality and weak disjointness of all iterates, Erg. Th. Dynam. Syst., 32 (2012), 1661-1672. |
[18] |
Kenneth Lau and Alan Zame, On weak mixing of cascades, Math. Systems Theory, 6 (1972/73), 307-311. |
[19] |
Jian Li, Transitive points via Furstenberg family, Topology and its Applications, 158 (2011), 2221-2231.doi: 10.1016/j.topol.2011.07.013. |
[20] |
Jian Li, Dynamical characterization of C-sets and its application, Fund. Math., 216 (2012), 259-286.doi: 10.4064/fm216-3-4. |
[21] |
Douglas Lind and Brian Marcus, "An Introduction to Symbolic Dynamics and Coding," Cambridge University Press, Cambridge, 1995. xvi+495 pp.doi: 10.1017/CBO9780511626302. |
[22] |
Jan de Vries, "Elements of Topological Dynamics," Mathematics and Its Applications, 257, Kluwer Academic Publishers Group, Dordrecht, 1993. xvi+748 pp. |
[23] |
Randall McCutcheon, Three results in recurrence, Ergodic Theory and Its Connections With Harmonic Analysis (Alexandria, 1993), 349-358, London Math. Soc. Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge, (1995).doi: 10.1017/CBO9780511574818.015. |
[24] |
Piotr Oprocha, Distributional chaos revisited, Trans. Amer. Math. Soc., 361 (2009), 4901-4925.doi: 10.1090/S0002-9947-09-04810-7. |
[25] |
Piotr Oprocha, Minimal systems and distributionally scrambled sets, preprint, Bull. S.M.F., to appear. |
[26] |
William Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416. |
[27] |
Rafał Pikuła, On some notions of chaos in dimension zero, Colloq. Math., 107 (2007), 167-177.doi: 10.4064/cm107-2-1. |
[28] |
Alfred Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493. |
[29] |
B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.doi: 10.2307/2154504. |
[30] |
Paul C. Shields, "The Ergodic Theory of Discrete Sample Paths," Graduate Studies in Mathematics, 13, American Mathematical Society, Providence, RI, 1996. xii+249 pp. |
[31] |
Karl Sigmund, On the distribution of periodic points for $\beta $-shifts, Monatsh. Math., 82 (1976), 247-252. |
[32] |
Klaus Thomsen, On the structure of beta shifts in "Algebraic and Topological Dynamics" 321-332, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, (2005).doi: 10.1090/conm/385/07204. |
[33] |
Xiangdong Ye and Ruifeng Zhang, On sensitive sets in topological dynamics, Nonlinearity, 21 (2008), 1601-1620.doi: 10.1088/0951-7715/21/7/012. |
[34] |
Peter Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. ix+250 pp. |