Citation: |
[1] |
X. Abdurahman and Z.Teng, Persistence and extinction for general nonautonomous n-species Lotka-Volterra cooperative systems with delays, Stud. Appl. Math., 118 (2007), 17-43.doi: 10.1111/j.1467-9590.2007.00362.x. |
[2] |
S. Ahmad, Extinction of species in nonautonomous Lotka-Volterra system, Proc. Am. Math. Soc., 127 (1999), 2905-2910.doi: 10.1090/S0002-9939-99-05083-2. |
[3] |
S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system, Nonlinear Anal., 40 (2000), 37-49.doi: 10.1016/S0362-546X(00)85003-8. |
[4] |
E. S. Allman and J. A. Rhodes, "Mathematical Models in Biology: An Introduction," Cambridge University Press, 2004. |
[5] |
A. Bahar and X. Mao, Stochastic delay population dynamics, International J. Pure and Applied in Math., 11 (2004), 377-400. |
[6] |
I. Barbalat, Systems dequations differentielles d'osci d'oscillations nonlineaires, Revue Roumaine de Mathematiques Pures et Appliquees, 4 (1959), 267-270. |
[7] |
A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Science," Academic Press, New York, 1979. |
[8] |
S. Cheng, Stochastic population systems, Stoch. Anal. Appl., 27 (2009), 854-874.doi: 10.1080/07362990902844348. |
[9] |
B. S. Goh, Stability in models of mutualism, Amer. Natural, 113 (1979), 261-275.doi: 10.1086/283384. |
[10] |
K. Golpalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics," Kluwer Academic, Dordrecht, 1992. |
[11] |
T. G. Hallam and Z. Ma, Persistence in population models with demographic fluctuations, J. Math. Biol., 24 (1986), 327-339.doi: 10.1007/BF00275641. |
[12] |
X. He and K. Gopalsamy, Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215 (1997), 154-173.doi: 10.1006/jmaa.1997.5632. |
[13] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic diffrential equations, SIAM Rev., 43 (2001), 525-546.doi: 10.1137/S0036144500378302. |
[14] |
Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays, J. Math. Anal. Appl., 375 (2011), 42-57.doi: 10.1016/j.jmaa.2010.08.017. |
[15] |
V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1-71.doi: 10.1016/0025-5564(92)90078-B. |
[16] |
D. Jiang, N. Shi and X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2006), 588-597.doi: 10.1016/j.jmaa.2007.08.014. |
[17] |
J. Jiang, On the global stability of cooperative systems, Bull. Lond. Math. Soc., 26 (1994), 455-458.doi: 10.1112/blms/26.5.455. |
[18] |
I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus," Springer-Verlag, Berlin, 1991.doi: 10.1007/978-1-4612-0949-2. |
[19] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press, Boston, 1993. |
[20] |
X. Li, A. Gray, D. Jiang and X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28.doi: 10.1016/j.jmaa.2010.10.053. |
[21] |
X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009), 523-545.doi: 10.3934/dcds.2009.24.523. |
[22] |
X. Li, D. Jiang and X. Mao, Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009), 427-448.doi: 10.1016/j.cam.2009.06.021. |
[23] |
M. Liu and K. Wang, Survival analysis of a stochastic cooperation system in a polluted environment, J. Biol. Syst., 19 (2011), 183-204.doi: 10.1142/S0218339011003877. |
[24] |
M. Liu and K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 375 (2011), 443-457.doi: 10.1016/j.jmaa.2010.09.058. |
[25] |
M. Liu, K. Wang and Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969-2012.doi: 10.1007/s11538-010-9569-5. |
[26] |
G. Lu, Z. Lu and X. Lian, Delay effect on the permanence for Lotka-Volterra cooperative systems, Nonlinear Anal. Real World Appl., 11 (2010), 2810-2816.doi: 10.1016/j.nonrwa.2009.10.005. |
[27] |
Z. Lu and Y. Takeuchi, Permanence and global stability for cooperative Lotka-Volterra diffusion systems, Nonlinear Anal., 19 (1992), 963-975.doi: 10.1016/0362-546X(92)90107-P. |
[28] |
Q. Luo and X. Mao, Stochastic population dynamics under regime switching II, J. Math. Anal. Appl., 355 (2009), 577-593. |
[29] |
X. Mao, S. Sabais and E. Renshaw, Asymptotic behavior of stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156.doi: 10.1016/S0022-247X(03)00539-0. |
[30] |
X. Mao and C. Yuan, "Stochastic Differential Equations with Markovian Switching," Imperial College Press, 2006. |
[31] |
J. Pan, Z. Jin and Z. Ma, Thresholds of survival for an n-dimensional Volterra mutualistic system in a polluted environment, J. Math. Anal. Appl., 252 (2000), 519-531.doi: 10.1006/jmaa.2000.6853. |
[32] |
S. Pang, F. Deng and X. Mao, Asymptotic properties of stochastic population dynamics, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 603-620. |
[33] |
H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species, SIAM J. Math. Anal., 46 (1986), 368-375.doi: 10.1137/0146025. |
[34] |
F. Wu and Y. Hu, Stochastic Lotka-Volterra system with unbounded distributed delay, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 275-288.doi: 10.3934/dcdsb.2010.14.275. |
[35] |
J. Zhao and J. Jiang, Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system, J. Math. Anal. Appl., 229 (2004), 663-675.doi: 10.1016/j.jmaa.2004.06.019. |
[36] |
J. Zhao, J. Jiang and A. Lazer, The permanence and global attractivity in a nonautonomous Lotka-Volterra system, Nonlinear Anal. Real World Appl., 5 (2004), 265-276.doi: 10.1016/S1468-1218(03)00038-5. |