- Previous Article
- DCDS Home
- This Issue
-
Next Article
Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces
On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems
1. | Department of Mathematics, Southeast University, Nanjing 210096 |
References:
[1] |
H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc., 83 (1990), viii+175. |
[2] |
H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-periodic Motions in Families of Dynamical Systems," Lecture Notes in Mathematics, 1645, 1996. |
[3] |
C. Q. Cheng, Lower diemsional invariant tori in the regions of instability of nearly integrable hamiltonian systems, Commun. Math. Phys., 203 (1999), 385-419.
doi: 10.1007/s002200050618. |
[4] |
L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999), 679-705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001). |
[5] |
S. M. Graff, On the conservation of hyperbolic invariant tori for hamiltonian systems, J. Differential Equations, 15 (1974), 1-69. |
[6] |
H. Her and J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differential Equations, 20 (2008), 831-866.
doi: 10.1007/s10884-008-9113-6. |
[7] |
A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111-124.
doi: 10.1016/0022-0396(92)90107-X. |
[8] |
A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737.
doi: 10.1137/S0036141094276913. |
[9] |
J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1976), 136-176. |
[10] |
J. Pöschel, On elliptic lower dimensional tori in hamiltonian systems, Math. Z., 202 (1989), 559-608.
doi: 10.1007/BF01221590. |
[11] |
W. Rudin, "Real and Complex Analysis," Third Edition, McGraw-Hill Compnies, Inc., 2003. |
[12] |
Junxiang Xu and Qin Zheng, On the reducibility of linear differential equations with quasi-periodic coefficients which are degenerate, Proc. Amer. Math. Soc., 126 (1998), 1445-1451.
doi: 10.1090/S0002-9939-98-04523-7. |
[13] |
Junxiang Xu, Persistence of Floquet invariant tori for a class of non-conservative dynamical systems, Proc. Amer. Math. Soc., 135 (2007), 805-814.
doi: 10.1090/S0002-9939-06-08529-7. |
[14] |
Junxiang Xu and Shunjun Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation, Ergodic Theory and Dynamical Systems, 31 (2011), 599-611.
doi: 10.1017/S0143385709001114. |
[15] |
Junxiang Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations, 250 (2011), 551-571.
doi: 10.1016/j.jde.2010.09.030. |
[16] |
J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 192 (1998), 145-168.
doi: 10.1007/s002200050294. |
show all references
References:
[1] |
H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, Unfoldings and bifurcations of quasi-periodic tori, Mem. Amer. Math. Soc., 83 (1990), viii+175. |
[2] |
H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-periodic Motions in Families of Dynamical Systems," Lecture Notes in Mathematics, 1645, 1996. |
[3] |
C. Q. Cheng, Lower diemsional invariant tori in the regions of instability of nearly integrable hamiltonian systems, Commun. Math. Phys., 203 (1999), 385-419.
doi: 10.1007/s002200050618. |
[4] |
L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999), 679-705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001). |
[5] |
S. M. Graff, On the conservation of hyperbolic invariant tori for hamiltonian systems, J. Differential Equations, 15 (1974), 1-69. |
[6] |
H. Her and J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differential Equations, 20 (2008), 831-866.
doi: 10.1007/s10884-008-9113-6. |
[7] |
A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111-124.
doi: 10.1016/0022-0396(92)90107-X. |
[8] |
A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737.
doi: 10.1137/S0036141094276913. |
[9] |
J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1976), 136-176. |
[10] |
J. Pöschel, On elliptic lower dimensional tori in hamiltonian systems, Math. Z., 202 (1989), 559-608.
doi: 10.1007/BF01221590. |
[11] |
W. Rudin, "Real and Complex Analysis," Third Edition, McGraw-Hill Compnies, Inc., 2003. |
[12] |
Junxiang Xu and Qin Zheng, On the reducibility of linear differential equations with quasi-periodic coefficients which are degenerate, Proc. Amer. Math. Soc., 126 (1998), 1445-1451.
doi: 10.1090/S0002-9939-98-04523-7. |
[13] |
Junxiang Xu, Persistence of Floquet invariant tori for a class of non-conservative dynamical systems, Proc. Amer. Math. Soc., 135 (2007), 805-814.
doi: 10.1090/S0002-9939-06-08529-7. |
[14] |
Junxiang Xu and Shunjun Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation, Ergodic Theory and Dynamical Systems, 31 (2011), 599-611.
doi: 10.1017/S0143385709001114. |
[15] |
Junxiang Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations, 250 (2011), 551-571.
doi: 10.1016/j.jde.2010.09.030. |
[16] |
J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 192 (1998), 145-168.
doi: 10.1007/s002200050294. |
[1] |
Koichiro Naito. Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 449-488. doi: 10.3934/dcds.2004.11.449 |
[2] |
Jinjing Jiao, Guanghua Shi. Quasi-periodic solutions for the two-dimensional systems with an elliptic-type degenerate equilibrium point under small perturbations. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5157-5180. doi: 10.3934/cpaa.2020231 |
[3] |
Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure and Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421 |
[4] |
Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467 |
[5] |
Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3169-3185. doi: 10.3934/dcds.2022013 |
[6] |
Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537 |
[7] |
Dongfeng Zhang, Junxiang Xu. On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1417-1445. doi: 10.3934/cpaa.2022024 |
[8] |
Helmut Rüssmann. KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 683-718. doi: 10.3934/dcdss.2010.3.683 |
[9] |
Wen Si, Fenfen Wang, Jianguo Si. Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method. Communications on Pure and Applied Analysis, 2020, 19 (1) : 541-585. doi: 10.3934/cpaa.2020027 |
[10] |
Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9 |
[11] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[12] |
Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75 |
[13] |
Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569 |
[14] |
Sijia Zhang, Shengfan Zhou. Random uniform exponential attractors for Schrödinger lattice systems with quasi-periodic forces and multiplicative white noise. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022056 |
[15] |
Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104 |
[16] |
Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585 |
[17] |
Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169 |
[18] |
Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1 |
[19] |
Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252 |
[20] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]