July  2013, 33(7): 2621-2629. doi: 10.3934/dcds.2013.33.2621

The local $C^1$-density of stable ergodicity

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

Received  June 2012 Revised  November 2012 Published  January 2013

In this paper, we prove that stable ergodicity is $C^1$-dense among conservative partially hyperbolic systems which, in a stable way, have two ergodic measures such that one has all center Lyapunov exponents non-negative and the other one has all center Lyapunov exponents non-positive.
Citation: Yunhua Zhou. The local $C^1$-density of stable ergodicity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2621-2629. doi: 10.3934/dcds.2013.33.2621
References:
[1]

F. Abdenur, C. Bonatti, S. Crovisier, L. Diaz and L. Wen, Periodic points and homoclinic classes,, Ergodic Theory Dynam. Systems, 27 (2007), 1. doi: 10.1017/S0143385706000538.

[2]

D. V. Anosov and Ya. Sinai, Certain smooth ergodic systems,, UspehiMat. Nauk, 22 (1967), 107.

[3]

A. Ávila, On the regularization of conservative maps,, Acta Math., 205 (2010), 5. doi: 10.1007/s11511-010-0050-y.

[4]

A. Ávila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms,, Trans. Amer. Math. Soc., 364 (2012), 2883. doi: 10.1090/S0002-9947-2012-05423-7.

[5]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic systems,, Ann. of Math. (2), 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423.

[6]

C. Bonatti and S. Crovisier, Récurrence et généricité,, Invent. Math., 158 (2004), 33. doi: 10.1007/s00222-004-0368-1.

[7]

C. Bonatti and L. Díaz, Persistent nonhyperbolic transitive diffeomorphisms,, Ann. of Math., 143 (1996), 357. doi: 10.2307/2118647.

[8]

C. Bonatti and L. Díaz, Robust heterodimensional cycles and $C^1$-generic dynamics,, J. Inst. Math. Jussieu, 7 (2008), 469. doi: 10.1017/S1474748008000030.

[9]

C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity,, Comment. Math. Helv., 79 (2004), 753. doi: 10.1007/s00014-004-0819-8.

[10]

K. Burns, D. Dolgopyat and Ya. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity,, J. Stat. Phys., 108 (2002), 927. doi: 10.1023/A:1019779128351.

[11]

K. Burns, C. Pugh, M. Shub and A. Wilkinson, Recent results about stable ergodicity,, in, 69 (2001), 327.

[12]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Ann. of Math., 171 (2010), 451. doi: 10.4007/annals.2010.171.451.

[13]

D. Dolgopyat and A. Wilkinson, Stable accessibility is $C^1$ dense,, Astérisque, 287 (2003), 33.

[14]

M. Grayson, C. Pugh and M. Shub, Stably ergodic diffeomorphisms,, Ann. of Math. (2), 140 (1994), 295. doi: 10.2307/2118602.

[15]

C. Liang, W. Sun and J. Yang, Some results on perturbations to Lyapunov exponents,, preprint, ().

[16]

C. Pugh and M. Shub, Stable ergodicity and partial hyperbolicity,, in, 362 (1995), 182.

[17]

F. Rodríguez Hertz, M. A. Rodríguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle,, Invent. Math., 172 (2008), 353. doi: 10.1007/s00222-007-0100-z.

[18]

F. Rodríguez Hertz, M. A. Rodríguez Hertz, A. Tahzibi and R. Ures, Creation of blenders in the conservative setting,, Nonlinearity, 23 (2010), 211. doi: 10.1088/0951-7715/23/2/001.

[19]

F. Rodríguez Hertz, M. A. Rodríguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and non-uniform hyperbolicity,, Duke Math. J., 160 (2011), 599. doi: 10.1215/00127094-1444314.

show all references

References:
[1]

F. Abdenur, C. Bonatti, S. Crovisier, L. Diaz and L. Wen, Periodic points and homoclinic classes,, Ergodic Theory Dynam. Systems, 27 (2007), 1. doi: 10.1017/S0143385706000538.

[2]

D. V. Anosov and Ya. Sinai, Certain smooth ergodic systems,, UspehiMat. Nauk, 22 (1967), 107.

[3]

A. Ávila, On the regularization of conservative maps,, Acta Math., 205 (2010), 5. doi: 10.1007/s11511-010-0050-y.

[4]

A. Ávila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms,, Trans. Amer. Math. Soc., 364 (2012), 2883. doi: 10.1090/S0002-9947-2012-05423-7.

[5]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic systems,, Ann. of Math. (2), 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423.

[6]

C. Bonatti and S. Crovisier, Récurrence et généricité,, Invent. Math., 158 (2004), 33. doi: 10.1007/s00222-004-0368-1.

[7]

C. Bonatti and L. Díaz, Persistent nonhyperbolic transitive diffeomorphisms,, Ann. of Math., 143 (1996), 357. doi: 10.2307/2118647.

[8]

C. Bonatti and L. Díaz, Robust heterodimensional cycles and $C^1$-generic dynamics,, J. Inst. Math. Jussieu, 7 (2008), 469. doi: 10.1017/S1474748008000030.

[9]

C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity,, Comment. Math. Helv., 79 (2004), 753. doi: 10.1007/s00014-004-0819-8.

[10]

K. Burns, D. Dolgopyat and Ya. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity,, J. Stat. Phys., 108 (2002), 927. doi: 10.1023/A:1019779128351.

[11]

K. Burns, C. Pugh, M. Shub and A. Wilkinson, Recent results about stable ergodicity,, in, 69 (2001), 327.

[12]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Ann. of Math., 171 (2010), 451. doi: 10.4007/annals.2010.171.451.

[13]

D. Dolgopyat and A. Wilkinson, Stable accessibility is $C^1$ dense,, Astérisque, 287 (2003), 33.

[14]

M. Grayson, C. Pugh and M. Shub, Stably ergodic diffeomorphisms,, Ann. of Math. (2), 140 (1994), 295. doi: 10.2307/2118602.

[15]

C. Liang, W. Sun and J. Yang, Some results on perturbations to Lyapunov exponents,, preprint, ().

[16]

C. Pugh and M. Shub, Stable ergodicity and partial hyperbolicity,, in, 362 (1995), 182.

[17]

F. Rodríguez Hertz, M. A. Rodríguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle,, Invent. Math., 172 (2008), 353. doi: 10.1007/s00222-007-0100-z.

[18]

F. Rodríguez Hertz, M. A. Rodríguez Hertz, A. Tahzibi and R. Ures, Creation of blenders in the conservative setting,, Nonlinearity, 23 (2010), 211. doi: 10.1088/0951-7715/23/2/001.

[19]

F. Rodríguez Hertz, M. A. Rodríguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and non-uniform hyperbolicity,, Duke Math. J., 160 (2011), 599. doi: 10.1215/00127094-1444314.

[1]

Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233

[2]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[3]

Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63

[4]

Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403

[5]

Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845

[6]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[7]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[8]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[9]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[10]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

[11]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[12]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[13]

Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287

[14]

Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599

[15]

Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641

[16]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[17]

Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81

[18]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[19]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[20]

Jianyu Chen. On essential coexistence of zero and nonzero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4149-4170. doi: 10.3934/dcds.2012.32.4149

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]