Advanced Search
Article Contents
Article Contents

The local $C^1$-density of stable ergodicity

Abstract Related Papers Cited by
  • In this paper, we prove that stable ergodicity is $C^1$-dense among conservative partially hyperbolic systems which, in a stable way, have two ergodic measures such that one has all center Lyapunov exponents non-negative and the other one has all center Lyapunov exponents non-positive.
    Mathematics Subject Classification: Primary: 37D30, 37C40; Secondary: 37A25.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Abdenur, C. Bonatti, S. Crovisier, L. Diaz and L. Wen, Periodic points and homoclinic classes, Ergodic Theory Dynam. Systems, 27 (2007), 1-22.doi: 10.1017/S0143385706000538.


    D. V. Anosov and Ya. Sinai, Certain smooth ergodic systems, UspehiMat. Nauk, 22 (1967), 107-172.


    A. Ávila, On the regularization of conservative maps, Acta Math., 205 (2010), 5-18.doi: 10.1007/s11511-010-0050-y.


    A. Ávila and J. Bochi, Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms, Trans. Amer. Math. Soc., 364 (2012), 2883-2907.doi: 10.1090/S0002-9947-2012-05423-7.


    J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic systems, Ann. of Math. (2), 161 (2005), 1423-1485.doi: 10.4007/annals.2005.161.1423.


    C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104.doi: 10.1007/s00222-004-0368-1.


    C. Bonatti and L. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math., 143 (1996), 357-396.doi: 10.2307/2118647.


    C. Bonatti and L. Díaz, Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu, 7 (2008), 469-525.doi: 10.1017/S1474748008000030.


    C. Bonatti, C. Matheus, M. Viana and A. Wilkinson, Abundance of stable ergodicity, Comment. Math. Helv., 79 (2004), 753-757.doi: 10.1007/s00014-004-0819-8.


    K. Burns, D. Dolgopyat and Ya. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Stat. Phys., 108 (2002), 927-942.doi: 10.1023/A:1019779128351.


    K. Burns, C. Pugh, M. Shub and A. Wilkinson, Recent results about stable ergodicity, in "Smooth ergodic theory and its applications (Seattle WA, 1999)", 69 of "Procs. Symp. Pure Math.", Amer. Math. Soc., (2001), 327-366.


    K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.doi: 10.4007/annals.2010.171.451.


    D. Dolgopyat and A. Wilkinson, Stable accessibility is $C^1$ dense, Astérisque, 287 (2003), 33-60.


    M. Grayson, C. Pugh and M. Shub, Stably ergodic diffeomorphisms, Ann. of Math. (2), 140 (1994), 295-329.doi: 10.2307/2118602.


    C. Liang, W. Sun and J. YangSome results on perturbations to Lyapunov exponents, preprint, arXiv:1011.5299


    C. Pugh and M. Shub, Stable ergodicity and partial hyperbolicity, in "1st International Conference on Dynamical Systems" (eds. F. Ledrappier etal.), Montevideo, Uruguay, (1995) - a tribute to Ricardo Mañé. Proceedings. Harlow: Longman. Pitman Res. Notes Math. Ser., 362 (1996), 182-187.


    F. Rodríguez Hertz, M. A. Rodríguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.doi: 10.1007/s00222-007-0100-z.


    F. Rodríguez Hertz, M. A. Rodríguez Hertz, A. Tahzibi and R. Ures, Creation of blenders in the conservative setting, Nonlinearity, 23 (2010), 211-223.doi: 10.1088/0951-7715/23/2/001.


    F. Rodríguez Hertz, M. A. Rodríguez Hertz, A. Tahzibi and R. Ures, New criteria for ergodicity and non-uniform hyperbolicity, Duke Math. J., 160 (2011), 599-629.doi: 10.1215/00127094-1444314.

  • 加载中

Article Metrics

HTML views() PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint