Citation: |
[1] |
L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity," Encyclopedia of Math. and Its Appl., 115, Cambridge Univ. Press, 2007. |
[2] |
L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math., 116 (2000), 29-70.doi: 10.1007/BF02773211. |
[3] |
L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity, J. Dynam. Differential Equations, 19 (2007), 215-241.doi: 10.1007/s10884-006-9026-1. |
[4] |
L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in Banach spaces, J. Differential Equations, 244 (2008), 2407-2447.doi: 10.1016/j.jde.2008.02.028. |
[5] |
L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations," Lect. Notes in Math., 1926, Springer, 2008.doi: 10.1007/978-3-540-74775-8. |
[6] |
N. Bhatia and G. Szegö, "Stability Theory of Dynamical Systems," Grundlehren der mathematischen Wissenschaften, 161, Springer, 1970. |
[7] |
Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space," Translations of Mathematical Monographs, 43, Amer. Math. Soc., 1974. |
[8] |
W. Hahn, "Stability of Motion," Grundlehren der mathematischen Wissenschaften, 138, Springer, 1967. |
[9] |
J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method, with Applications," Mathematics in Science and Engineering, 4, Academic Press, New York-London, 1961. |
[10] |
A. Lyapunov, "The General Problem of the Stability of Motion," Taylor and Francis, 1992. |
[11] |
J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces," Pure and Applied Mathematics, 21, Academic Press, 1966. |
[12] |
V. Oseledets, A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-221. |
[13] |
M. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergodic Theory Dynam. Systems, 5 (1985), 145-161.doi: 10.1017/S0143385700002807. |