July  2013, 33(7): 2631-2650. doi: 10.3934/dcds.2013.33.2631

Stability of nonautonomous equations and Lyapunov functions

1. 

Departamento de Matemática, Instituto Superior Técnico, UTL, 1049-001 Lisboa

2. 

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa

Received  May 2011 Revised  November 2012 Published  January 2013

We consider nonautonomous linear equations $x'=A(t)x$ in a Banach space, and we give a complete characterization of those admitting nonuniform exponential contractions in terms of strict Lyapunov functions. The uniform contractions are a very particular case of nonuniform exponential contractions. In addition, we establish ``inverse theorems'' that give explicitly a strict Lyapunov function for each nonuniform contraction. These functions are constructed in terms of Lyapunov norms, which transform the nonuniform behavior of the contraction into a uniform exponential behavior. Moreover, we use the characterization of nonuniform exponential contractions in terms of strict Lyapunov functions to establish in a very simple manner, in comparison with former works, the persistence of the asymptotic stability under sufficiently small linear and nonlinear perturbations.
Citation: Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631
References:
[1]

L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity,", Encyclopedia of Math. and Its Appl., 115 (2007).   Google Scholar

[2]

L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29.  doi: 10.1007/BF02773211.  Google Scholar

[3]

L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity,, J. Dynam. Differential Equations, 19 (2007), 215.  doi: 10.1007/s10884-006-9026-1.  Google Scholar

[4]

L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in Banach spaces,, J. Differential Equations, 244 (2008), 2407.  doi: 10.1016/j.jde.2008.02.028.  Google Scholar

[5]

L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations,", Lect. Notes in Math., 1926 (2008).  doi: 10.1007/978-3-540-74775-8.  Google Scholar

[6]

N. Bhatia and G. Szegö, "Stability Theory of Dynamical Systems,", Grundlehren der mathematischen Wissenschaften, 161 (1970).   Google Scholar

[7]

Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974).   Google Scholar

[8]

W. Hahn, "Stability of Motion,", Grundlehren der mathematischen Wissenschaften, 138 (1967).   Google Scholar

[9]

J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method, with Applications,", Mathematics in Science and Engineering, 4 (1961).   Google Scholar

[10]

A. Lyapunov, "The General Problem of the Stability of Motion,", Taylor and Francis, (1992).   Google Scholar

[11]

J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces,", Pure and Applied Mathematics, 21 (1966).   Google Scholar

[12]

V. Oseledets, A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197.   Google Scholar

[13]

M. Wojtkowski, Invariant families of cones and Lyapunov exponents,, Ergodic Theory Dynam. Systems, 5 (1985), 145.  doi: 10.1017/S0143385700002807.  Google Scholar

show all references

References:
[1]

L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity,", Encyclopedia of Math. and Its Appl., 115 (2007).   Google Scholar

[2]

L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29.  doi: 10.1007/BF02773211.  Google Scholar

[3]

L. Barreira and C. Valls, Nonuniform exponential dichotomies and Lyapunov regularity,, J. Dynam. Differential Equations, 19 (2007), 215.  doi: 10.1007/s10884-006-9026-1.  Google Scholar

[4]

L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in Banach spaces,, J. Differential Equations, 244 (2008), 2407.  doi: 10.1016/j.jde.2008.02.028.  Google Scholar

[5]

L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations,", Lect. Notes in Math., 1926 (2008).  doi: 10.1007/978-3-540-74775-8.  Google Scholar

[6]

N. Bhatia and G. Szegö, "Stability Theory of Dynamical Systems,", Grundlehren der mathematischen Wissenschaften, 161 (1970).   Google Scholar

[7]

Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974).   Google Scholar

[8]

W. Hahn, "Stability of Motion,", Grundlehren der mathematischen Wissenschaften, 138 (1967).   Google Scholar

[9]

J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method, with Applications,", Mathematics in Science and Engineering, 4 (1961).   Google Scholar

[10]

A. Lyapunov, "The General Problem of the Stability of Motion,", Taylor and Francis, (1992).   Google Scholar

[11]

J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces,", Pure and Applied Mathematics, 21 (1966).   Google Scholar

[12]

V. Oseledets, A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 197.   Google Scholar

[13]

M. Wojtkowski, Invariant families of cones and Lyapunov exponents,, Ergodic Theory Dynam. Systems, 5 (1985), 145.  doi: 10.1017/S0143385700002807.  Google Scholar

[1]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[5]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]