July  2013, 33(7): 2651-2665. doi: 10.3934/dcds.2013.33.2651

DAD characterization in electromechanical cardiac models

1. 

Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy, Italy

Received  April 2012 Revised  November 2012 Published  January 2013

We investigate the possibility of modeling the delayed afterdepolarization (DAD) occurrence in the framework of the classical FitzHugh-Nagumo (FN) dynamical system, as well as in more recent electromechanically-coupled cardiac models. Within the FN model, we identify the domain in the constitutive parameters' space for which orbits exist which exhibit a sufficiently strong secondary impulse. We then address the question whether a locally-induced secondary pulse succeeds or not in originating a self-propagating traveling impulse. Our results evidence that, in the range where secondary impulses exceed the physiological threshold for DAD onset, a local impulse almost certainly causes a traveling impulse (mechanism known as all-or-none). We then consider a recently proposed electromechanically-coupled generalization of the FN model, and show that the mechanical coupling stabilizes the system, in the sense that the more strong the coupling, the less likely is DAD to occur.
Citation: Paolo Biscari, Chiara Lelli. DAD characterization in electromechanical cardiac models. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2651-2665. doi: 10.3934/dcds.2013.33.2651
References:
[1]

J. Am. Coll. Cardiol., 23 (1994), 259-277. Google Scholar

[2]

Am. J. Physiol.-Heart. C., 281 (2001), H903-H914. Google Scholar

[3]

Biophys. J., 68 (1995), 1752-1766. Google Scholar

[4]

Biophys. J., 1 (1961), 445-466. Google Scholar

[5]

Proc. IRE, 50 (1962), 2061-2070. Google Scholar

[6]

Ed. Springer Verlag, Berlin, 1998.  Google Scholar

[7]

Eur. Phys. J. Plus, 126 (2011), 1-9. Google Scholar

[8]

SIAM J. Appl. Math., 63 (2002), 459-484. doi: 10.1137/S0036139901393500.  Google Scholar

[9]

Circ. Res., 87 (2000), 774-780. Google Scholar

[10]

Biophys. J., 99 (2010), 1408-1415. Google Scholar

[11]

Circ. Res., 74 (1994), 1097-1113. Google Scholar

[12]

Ed. IEEE, New York, (2004), 3027-3030. Google Scholar

[13]

Prog. Biophys. Mol. Bio., 85 (2004), 501-522. Google Scholar

[14]

Acta Appl. Math., 2012. doi: 10.1007/s10440-012-9744-9.  Google Scholar

[15]

J. Math. Biol., 1 (1974), 153-163.  Google Scholar

[16]

Ph.D. Thesis, Politecnico di Milano, 2012. Google Scholar

[17]

SIAM J. Appl. Math., 42 (1982), 247-260. doi: 10.1137/0142018.  Google Scholar

[18]

J. Neuosci., 17 (1997), 7404-7414. Google Scholar

[19]

Progr. Biophys. Molec. Biol., 97 (2008), 562-573. Google Scholar

[20]

SIAM J. Appl. Math., 71 (2011), 605-621. doi: 10.1137/100788379.  Google Scholar

[21]

IEEE Trans. Biomed. Eng., 41 (1994), 743-757. Google Scholar

[22]

Chaos Sol. Fract., 7 (1996), 293-301. Google Scholar

[23]

Biophys. J., 13 (1973), 1313-1337.  Google Scholar

[24]

Ed. Cambridge University Press, 2010.  Google Scholar

[25]

Circ. Res., 88 (2001), 1159-1167. Google Scholar

[26]

Acta Numer., 13 (2004), 371-431. doi: 10.1017/S0962492904000200.  Google Scholar

show all references

References:
[1]

J. Am. Coll. Cardiol., 23 (1994), 259-277. Google Scholar

[2]

Am. J. Physiol.-Heart. C., 281 (2001), H903-H914. Google Scholar

[3]

Biophys. J., 68 (1995), 1752-1766. Google Scholar

[4]

Biophys. J., 1 (1961), 445-466. Google Scholar

[5]

Proc. IRE, 50 (1962), 2061-2070. Google Scholar

[6]

Ed. Springer Verlag, Berlin, 1998.  Google Scholar

[7]

Eur. Phys. J. Plus, 126 (2011), 1-9. Google Scholar

[8]

SIAM J. Appl. Math., 63 (2002), 459-484. doi: 10.1137/S0036139901393500.  Google Scholar

[9]

Circ. Res., 87 (2000), 774-780. Google Scholar

[10]

Biophys. J., 99 (2010), 1408-1415. Google Scholar

[11]

Circ. Res., 74 (1994), 1097-1113. Google Scholar

[12]

Ed. IEEE, New York, (2004), 3027-3030. Google Scholar

[13]

Prog. Biophys. Mol. Bio., 85 (2004), 501-522. Google Scholar

[14]

Acta Appl. Math., 2012. doi: 10.1007/s10440-012-9744-9.  Google Scholar

[15]

J. Math. Biol., 1 (1974), 153-163.  Google Scholar

[16]

Ph.D. Thesis, Politecnico di Milano, 2012. Google Scholar

[17]

SIAM J. Appl. Math., 42 (1982), 247-260. doi: 10.1137/0142018.  Google Scholar

[18]

J. Neuosci., 17 (1997), 7404-7414. Google Scholar

[19]

Progr. Biophys. Molec. Biol., 97 (2008), 562-573. Google Scholar

[20]

SIAM J. Appl. Math., 71 (2011), 605-621. doi: 10.1137/100788379.  Google Scholar

[21]

IEEE Trans. Biomed. Eng., 41 (1994), 743-757. Google Scholar

[22]

Chaos Sol. Fract., 7 (1996), 293-301. Google Scholar

[23]

Biophys. J., 13 (1973), 1313-1337.  Google Scholar

[24]

Ed. Cambridge University Press, 2010.  Google Scholar

[25]

Circ. Res., 88 (2001), 1159-1167. Google Scholar

[26]

Acta Numer., 13 (2004), 371-431. doi: 10.1017/S0962492904000200.  Google Scholar

[1]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[2]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[3]

Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021008

[4]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[5]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[6]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[7]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[8]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[9]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[10]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[11]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[12]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[13]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[14]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[15]

Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253

[16]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]