-
Previous Article
Global weak solutions to a general liquid crystals system
- DCDS Home
- This Issue
-
Next Article
DAD characterization in electromechanical cardiac models
The period set of a map from the Cantor set to itself
1. | Mathematics Department, Brigham Young University, Provo, UT, 84602, United States |
2. | Mathematics Department, Southern Utah University, Cedar City, UT, 84720, United States |
3. | Institute of Mathematics, University of Gdańsk ul. Wita Stwosza 57, PL-80952 Gdańsk, Poland |
References:
[1] |
Ll. Alsedà, D. Juher and P. Mumbrú, Sets of periods for piecewise monotone tree maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311.
doi: 10.1142/S021812740300656X. |
[2] |
Lluís Alsedà, Jaume Llibre and Michał Misiurewicz, Periodic orbits of maps of $Y$,, Trans. Amer. Math. Soc., 313 (1989), 475.
doi: 10.2307/2001417. |
[3] |
Lluís Alsedà i Soler, Periodic points of continuous mappings of the circle,, Publ. Sec. Mat. Univ. Autònoma Barcelona, 24 (1981), 5.
|
[4] |
Stewart Baldwin, An extension of Šarkovskiĭ's theorem to the $n-od$,, Ergodic Theory Dynam. Systems, 11 (1991), 249.
doi: 10.1017/S0143385700006131. |
[5] |
Stewart Baldwin, Versions of Sharkovskiĭ's theorem on trees and dendrites,, Topology Proc., 18 (1993), 19.
|
[6] |
Louis Block, John Guckenheimer, Michał Misiurewicz and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps,, in, 819 (1980), 18.
|
[7] |
A. I. Demin, Coexistence of periodic, almost periodic and recurrent points of transformations of $n-od$,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1996), 84.
|
[8] |
Patrick Gallagher, Approximation by reduced fractions,, J. Math. Soc. Japan, 13 (1961), 342.
|
[9] |
Christian Gillot and Jaume Llibre, Periods for maps of the figure-eight space,, in, 8 (1995), 95.
|
[10] |
W. T. Ingram, Periodic points for homeomorphisms of hereditarily decomposable chainable continua,, Proc. Amer. Math. Soc., 107 (1989), 549.
doi: 10.2307/2047846. |
[11] |
Mark H. Meilstrup, "Wild Low-Dimensional Topology and Dynamics,", Ph.D thesis, (2010).
|
[12] |
Michał Misiurewicz, Periodic points of maps of degree one of a circle,, Ergodic Theory Dynamical Systems, 2 (1982), 221.
|
[13] |
E. Mochko, V. V. Nekrashevich and V. I. Sushchanskiĭ, Dynamics of triangular transformations of sequences over finite alphabets,, Mat. Zametki, 73 (2003), 466.
doi: 10.1023/A:1023234532265. |
[14] |
T. Pezda, Polynomial cycles in certain local domains,, Acta Arith., 66 (1994), 11.
|
[15] |
A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263.
doi: 10.1142/S0218127495000934. |
[16] |
H. W. Siegberg, Chaotic mappings on $S^1$, periods one, two, three imply chaos on $S^1$,, in, 878 (1981), 351.
|
[17] |
V. I. Sushchanski, E. Moćko and V. V. Nekrashevych, Cycles of distance-decreasing mappings in the ring of $n$-adic integers,, Colloq. Math., 105 (2006), 197.
doi: 10.4064/cm105-2-3. |
show all references
References:
[1] |
Ll. Alsedà, D. Juher and P. Mumbrú, Sets of periods for piecewise monotone tree maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311.
doi: 10.1142/S021812740300656X. |
[2] |
Lluís Alsedà, Jaume Llibre and Michał Misiurewicz, Periodic orbits of maps of $Y$,, Trans. Amer. Math. Soc., 313 (1989), 475.
doi: 10.2307/2001417. |
[3] |
Lluís Alsedà i Soler, Periodic points of continuous mappings of the circle,, Publ. Sec. Mat. Univ. Autònoma Barcelona, 24 (1981), 5.
|
[4] |
Stewart Baldwin, An extension of Šarkovskiĭ's theorem to the $n-od$,, Ergodic Theory Dynam. Systems, 11 (1991), 249.
doi: 10.1017/S0143385700006131. |
[5] |
Stewart Baldwin, Versions of Sharkovskiĭ's theorem on trees and dendrites,, Topology Proc., 18 (1993), 19.
|
[6] |
Louis Block, John Guckenheimer, Michał Misiurewicz and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps,, in, 819 (1980), 18.
|
[7] |
A. I. Demin, Coexistence of periodic, almost periodic and recurrent points of transformations of $n-od$,, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1996), 84.
|
[8] |
Patrick Gallagher, Approximation by reduced fractions,, J. Math. Soc. Japan, 13 (1961), 342.
|
[9] |
Christian Gillot and Jaume Llibre, Periods for maps of the figure-eight space,, in, 8 (1995), 95.
|
[10] |
W. T. Ingram, Periodic points for homeomorphisms of hereditarily decomposable chainable continua,, Proc. Amer. Math. Soc., 107 (1989), 549.
doi: 10.2307/2047846. |
[11] |
Mark H. Meilstrup, "Wild Low-Dimensional Topology and Dynamics,", Ph.D thesis, (2010).
|
[12] |
Michał Misiurewicz, Periodic points of maps of degree one of a circle,, Ergodic Theory Dynamical Systems, 2 (1982), 221.
|
[13] |
E. Mochko, V. V. Nekrashevich and V. I. Sushchanskiĭ, Dynamics of triangular transformations of sequences over finite alphabets,, Mat. Zametki, 73 (2003), 466.
doi: 10.1023/A:1023234532265. |
[14] |
T. Pezda, Polynomial cycles in certain local domains,, Acta Arith., 66 (1994), 11.
|
[15] |
A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263.
doi: 10.1142/S0218127495000934. |
[16] |
H. W. Siegberg, Chaotic mappings on $S^1$, periods one, two, three imply chaos on $S^1$,, in, 878 (1981), 351.
|
[17] |
V. I. Sushchanski, E. Moćko and V. V. Nekrashevych, Cycles of distance-decreasing mappings in the ring of $n$-adic integers,, Colloq. Math., 105 (2006), 197.
doi: 10.4064/cm105-2-3. |
[1] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[2] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[3] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[4] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[5] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[6] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[7] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
[8] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[9] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[10] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[11] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[12] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[13] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[14] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[15] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[16] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[17] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[18] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[19] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[20] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]