July  2013, 33(7): 2667-2679. doi: 10.3934/dcds.2013.33.2667

The period set of a map from the Cantor set to itself

1. 

Mathematics Department, Brigham Young University, Provo, UT, 84602, United States

2. 

Mathematics Department, Southern Utah University, Cedar City, UT, 84720, United States

3. 

Institute of Mathematics, University of Gdańsk ul. Wita Stwosza 57, PL-80952 Gdańsk, Poland

Received  March 2012 Revised  August 2012 Published  January 2013

In this paper we consider all possible period sets $P(f)$ for self-maps of the Cantor set, $f:C\to C$. We prove that the possible period sets are completely unrestricted provided that, in addition, one allows points that are not periodic. However, if every point is periodic, we show that a surprising finiteness condition is imposed on $P(f)$: namely, there is a finite subset $B$ of $P(f)$ such that every element of $P(f)$ is divisible by at least one element of $B$.
Citation: James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667
References:
[1]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311-341. doi: 10.1142/S021812740300656X.  Google Scholar

[2]

Trans. Amer. Math. Soc., 313 (1989), 475-538. doi: 10.2307/2001417.  Google Scholar

[3]

Publ. Sec. Mat. Univ. Autònoma Barcelona, 24 (1981), 5-71.  Google Scholar

[4]

Ergodic Theory Dynam. Systems, 11 (1991), 249-271. doi: 10.1017/S0143385700006131.  Google Scholar

[5]

Topology Proc., 18 (1993), 19-31.  Google Scholar

[6]

in "Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979)" 819 of Lecture Notes in Math., 18-34. Springer, Berlin, (1980).  Google Scholar

[7]

Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1996), 84-87.  Google Scholar

[8]

J. Math. Soc. Japan, 13 (1961), 342-345.  Google Scholar

[9]

in "Thirty Years After Sharkovskiĭ's Theorem: New Perspectives (Murcia, 1994)" 8 of World Sci. Ser. Nonlinear Sci. Ser. B Spec. Theme Issues Proc., 95-106. World Sci. Publ., River Edge, NJ, (1995). Reprint of the paper reviewed in MR1361924 (97d:58161).  Google Scholar

[10]

Proc. Amer. Math. Soc., 107 (1989), 549-553. doi: 10.2307/2047846.  Google Scholar

[11]

Ph.D thesis, Brigham Young University, 2010.  Google Scholar

[12]

Ergodic Theory Dynamical Systems, 2 (1982), 221-227.  Google Scholar

[13]

Mat. Zametki, 73 (2003), 466-468. Translation in Math. Notes, 73 (2003), 436-439. doi: 10.1023/A:1023234532265.  Google Scholar

[14]

Acta Arith., 66 (1994), 11-22.  Google Scholar

[15]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273. Translated from the Russian Ukrain. Mat. Zh., 16 (1964), 61-71 by J. Tolosa. doi: 10.1142/S0218127495000934.  Google Scholar

[16]

in "Numerical Solution of Nonlinear Equations (Bremen, 1980)" 878 of Lecture Notes in Math., 351-370. Springer, Berlin, (1981).  Google Scholar

[17]

Colloq. Math., 105 (2006), 197-205. doi: 10.4064/cm105-2-3.  Google Scholar

show all references

References:
[1]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 311-341. doi: 10.1142/S021812740300656X.  Google Scholar

[2]

Trans. Amer. Math. Soc., 313 (1989), 475-538. doi: 10.2307/2001417.  Google Scholar

[3]

Publ. Sec. Mat. Univ. Autònoma Barcelona, 24 (1981), 5-71.  Google Scholar

[4]

Ergodic Theory Dynam. Systems, 11 (1991), 249-271. doi: 10.1017/S0143385700006131.  Google Scholar

[5]

Topology Proc., 18 (1993), 19-31.  Google Scholar

[6]

in "Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979)" 819 of Lecture Notes in Math., 18-34. Springer, Berlin, (1980).  Google Scholar

[7]

Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3 (1996), 84-87.  Google Scholar

[8]

J. Math. Soc. Japan, 13 (1961), 342-345.  Google Scholar

[9]

in "Thirty Years After Sharkovskiĭ's Theorem: New Perspectives (Murcia, 1994)" 8 of World Sci. Ser. Nonlinear Sci. Ser. B Spec. Theme Issues Proc., 95-106. World Sci. Publ., River Edge, NJ, (1995). Reprint of the paper reviewed in MR1361924 (97d:58161).  Google Scholar

[10]

Proc. Amer. Math. Soc., 107 (1989), 549-553. doi: 10.2307/2047846.  Google Scholar

[11]

Ph.D thesis, Brigham Young University, 2010.  Google Scholar

[12]

Ergodic Theory Dynamical Systems, 2 (1982), 221-227.  Google Scholar

[13]

Mat. Zametki, 73 (2003), 466-468. Translation in Math. Notes, 73 (2003), 436-439. doi: 10.1023/A:1023234532265.  Google Scholar

[14]

Acta Arith., 66 (1994), 11-22.  Google Scholar

[15]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273. Translated from the Russian Ukrain. Mat. Zh., 16 (1964), 61-71 by J. Tolosa. doi: 10.1142/S0218127495000934.  Google Scholar

[16]

in "Numerical Solution of Nonlinear Equations (Bremen, 1980)" 878 of Lecture Notes in Math., 351-370. Springer, Berlin, (1981).  Google Scholar

[17]

Colloq. Math., 105 (2006), 197-205. doi: 10.4064/cm105-2-3.  Google Scholar

[1]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[2]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[5]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[6]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[7]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[8]

Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021057

[9]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[10]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[11]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[12]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[13]

Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021008

[14]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[15]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[16]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[17]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[18]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[19]

Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021062

[20]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (1)

[Back to Top]