July  2013, 33(7): 2681-2710. doi: 10.3934/dcds.2013.33.2681

Global weak solutions to a general liquid crystals system

1. 

Department of Mathematics, Huzhou Teachers College, Zhejiang Huzhou, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai, China, China

Received  January 2012 Revised  November 2012 Published  January 2013

We prove the global existence of finite energy weak solutions to the general liquid crystals system. The problem is studied in bounded domain of $\mathbb{R}^3$ with Dirichlet boundary conditions and the whole space $\mathbb{R}^3$.
Citation: Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681
References:
[1]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[2]

A. P. Calderon and A. Zygmund, On singular integrals,, Amer. J. Math., 78 (1956), 289.   Google Scholar

[3]

de Gennes, "The Physics of Liquid Crystals,", Claredon Press, (1993).   Google Scholar

[4]

D. H. Wang and Y. Cheng, Global weak solution and large-time behavior for the compressible flow of liquid crystals,, Arch. Rational Mech. Anal., 204 (2012), 881.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[5]

E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[6]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[7]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman & Hall press, (1994).   Google Scholar

[8]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[9]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135.  doi: 10.1007/s002050000102.  Google Scholar

[10]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.   Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

F. M. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357.   Google Scholar

[13]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Methods Appl. Sci., 32 (2009), 2243.  doi: 10.1002/mma.1132.  Google Scholar

[15]

G. P. Galdi, "An Introduction to the Mathematical Theory of the NavierStokes Equations I,", Springer-Verlag, (1994).   Google Scholar

[16]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[17]

J. L. Ericksen, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[18]

J. L. Ericksen, Anisotropic fluids,, Arch. Rational Mech. Anal., 4 (1960), 231.   Google Scholar

[19]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure,, SIAM J. Math. Anal., 21 (1990), 1093.  doi: 10.1137/0521061.  Google Scholar

[20]

L. C. Evans, "Partial Differential Equations,", Amer. Math. Soc. Providence, (1998).   Google Scholar

[21]

M. E. Bogovskii, Solution of some problems of vector analysis, associated with the operators div and grad(in Russian),, Trudy Sem. S. L. Sobolev, (1980), 5.   Google Scholar

[22]

M. J. Stephen, Hydrodynamics of liquid crystals,, Phys. Rev. A, 2 (1970), 1558.   Google Scholar

[23]

O. Parodi, Stress tensor for a nematic liquid crystal,, J. Phys., 31 (1970), 581.   Google Scholar

[24]

P. L. lions, "Mathematical Topics in Fluid Dynamics, Vol.2. Compressible Models,", The Clarendon Press, (1998).   Google Scholar

[25]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", North-Holland, (1977).   Google Scholar

[26]

S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[27]

S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 539.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[28]

X. G. Liu and Z. Y. Zhang, Existence of the flow of liquid crystals system,, Chinese Ann. Math. Ser. A, 30 (2009), 1.   Google Scholar

[29]

X. G. Liu and J. Qing, Globally weak solutions to the flow of compressible liquid crystals system,, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 757.   Google Scholar

[30]

X. P. Hu and D. H. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals,, Comm. Math. Phys., 296 (2010), 861.  doi: 10.1007/s00220-010-1017-8.  Google Scholar

[31]

Y. Z. Xie, "The Physics of Liquid Crystals,", Scientific Press, (1988).   Google Scholar

show all references

References:
[1]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[2]

A. P. Calderon and A. Zygmund, On singular integrals,, Amer. J. Math., 78 (1956), 289.   Google Scholar

[3]

de Gennes, "The Physics of Liquid Crystals,", Claredon Press, (1993).   Google Scholar

[4]

D. H. Wang and Y. Cheng, Global weak solution and large-time behavior for the compressible flow of liquid crystals,, Arch. Rational Mech. Anal., 204 (2012), 881.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[5]

E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[6]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[7]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman & Hall press, (1994).   Google Scholar

[8]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[9]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135.  doi: 10.1007/s002050000102.  Google Scholar

[10]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.   Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[12]

F. M. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357.   Google Scholar

[13]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Methods Appl. Sci., 32 (2009), 2243.  doi: 10.1002/mma.1132.  Google Scholar

[15]

G. P. Galdi, "An Introduction to the Mathematical Theory of the NavierStokes Equations I,", Springer-Verlag, (1994).   Google Scholar

[16]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[17]

J. L. Ericksen, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[18]

J. L. Ericksen, Anisotropic fluids,, Arch. Rational Mech. Anal., 4 (1960), 231.   Google Scholar

[19]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure,, SIAM J. Math. Anal., 21 (1990), 1093.  doi: 10.1137/0521061.  Google Scholar

[20]

L. C. Evans, "Partial Differential Equations,", Amer. Math. Soc. Providence, (1998).   Google Scholar

[21]

M. E. Bogovskii, Solution of some problems of vector analysis, associated with the operators div and grad(in Russian),, Trudy Sem. S. L. Sobolev, (1980), 5.   Google Scholar

[22]

M. J. Stephen, Hydrodynamics of liquid crystals,, Phys. Rev. A, 2 (1970), 1558.   Google Scholar

[23]

O. Parodi, Stress tensor for a nematic liquid crystal,, J. Phys., 31 (1970), 581.   Google Scholar

[24]

P. L. lions, "Mathematical Topics in Fluid Dynamics, Vol.2. Compressible Models,", The Clarendon Press, (1998).   Google Scholar

[25]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", North-Holland, (1977).   Google Scholar

[26]

S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[27]

S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 539.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[28]

X. G. Liu and Z. Y. Zhang, Existence of the flow of liquid crystals system,, Chinese Ann. Math. Ser. A, 30 (2009), 1.   Google Scholar

[29]

X. G. Liu and J. Qing, Globally weak solutions to the flow of compressible liquid crystals system,, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 757.   Google Scholar

[30]

X. P. Hu and D. H. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals,, Comm. Math. Phys., 296 (2010), 861.  doi: 10.1007/s00220-010-1017-8.  Google Scholar

[31]

Y. Z. Xie, "The Physics of Liquid Crystals,", Scientific Press, (1988).   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[4]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[5]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[12]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]