July  2013, 33(7): 2681-2710. doi: 10.3934/dcds.2013.33.2681

Global weak solutions to a general liquid crystals system

1. 

Department of Mathematics, Huzhou Teachers College, Zhejiang Huzhou, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai, China, China

Received  January 2012 Revised  November 2012 Published  January 2013

We prove the global existence of finite energy weak solutions to the general liquid crystals system. The problem is studied in bounded domain of $\mathbb{R}^3$ with Dirichlet boundary conditions and the whole space $\mathbb{R}^3$.
Citation: Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681
References:
[1]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar

[2]

A. P. Calderon and A. Zygmund, On singular integrals,, Amer. J. Math., 78 (1956), 289. Google Scholar

[3]

de Gennes, "The Physics of Liquid Crystals,", Claredon Press, (1993). Google Scholar

[4]

D. H. Wang and Y. Cheng, Global weak solution and large-time behavior for the compressible flow of liquid crystals,, Arch. Rational Mech. Anal., 204 (2012), 881. doi: 10.1007/s00205-011-0488-x. Google Scholar

[5]

E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358. doi: 10.1007/PL00000976. Google Scholar

[6]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004). Google Scholar

[7]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman & Hall press, (1994). Google Scholar

[8]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605. Google Scholar

[9]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135. doi: 10.1007/s002050000102. Google Scholar

[10]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289. Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[12]

F. M. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357. Google Scholar

[13]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265. doi: 10.1007/BF00251810. Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Methods Appl. Sci., 32 (2009), 2243. doi: 10.1002/mma.1132. Google Scholar

[15]

G. P. Galdi, "An Introduction to the Mathematical Theory of the NavierStokes Equations I,", Springer-Verlag, (1994). Google Scholar

[16]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371. Google Scholar

[17]

J. L. Ericksen, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265. doi: 10.1007/BF00251810. Google Scholar

[18]

J. L. Ericksen, Anisotropic fluids,, Arch. Rational Mech. Anal., 4 (1960), 231. Google Scholar

[19]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure,, SIAM J. Math. Anal., 21 (1990), 1093. doi: 10.1137/0521061. Google Scholar

[20]

L. C. Evans, "Partial Differential Equations,", Amer. Math. Soc. Providence, (1998). Google Scholar

[21]

M. E. Bogovskii, Solution of some problems of vector analysis, associated with the operators div and grad(in Russian),, Trudy Sem. S. L. Sobolev, (1980), 5. Google Scholar

[22]

M. J. Stephen, Hydrodynamics of liquid crystals,, Phys. Rev. A, 2 (1970), 1558. Google Scholar

[23]

O. Parodi, Stress tensor for a nematic liquid crystal,, J. Phys., 31 (1970), 581. Google Scholar

[24]

P. L. lions, "Mathematical Topics in Fluid Dynamics, Vol.2. Compressible Models,", The Clarendon Press, (1998). Google Scholar

[25]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", North-Holland, (1977). Google Scholar

[26]

S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357. doi: 10.3934/dcdsb.2011.15.357. Google Scholar

[27]

S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 539. doi: 10.3934/dcds.2012.32.539. Google Scholar

[28]

X. G. Liu and Z. Y. Zhang, Existence of the flow of liquid crystals system,, Chinese Ann. Math. Ser. A, 30 (2009), 1. Google Scholar

[29]

X. G. Liu and J. Qing, Globally weak solutions to the flow of compressible liquid crystals system,, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 757. Google Scholar

[30]

X. P. Hu and D. H. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals,, Comm. Math. Phys., 296 (2010), 861. doi: 10.1007/s00220-010-1017-8. Google Scholar

[31]

Y. Z. Xie, "The Physics of Liquid Crystals,", Scientific Press, (1988). Google Scholar

show all references

References:
[1]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar

[2]

A. P. Calderon and A. Zygmund, On singular integrals,, Amer. J. Math., 78 (1956), 289. Google Scholar

[3]

de Gennes, "The Physics of Liquid Crystals,", Claredon Press, (1993). Google Scholar

[4]

D. H. Wang and Y. Cheng, Global weak solution and large-time behavior for the compressible flow of liquid crystals,, Arch. Rational Mech. Anal., 204 (2012), 881. doi: 10.1007/s00205-011-0488-x. Google Scholar

[5]

E. Feireisl, A. Novotny and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358. doi: 10.1007/PL00000976. Google Scholar

[6]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004). Google Scholar

[7]

E. G. Virga, "Variational Theories for Liquid Crystals,", Chapman & Hall press, (1994). Google Scholar

[8]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605. Google Scholar

[9]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system,, Arch. Rational Mech. Anal., 154 (2000), 135. doi: 10.1007/s002050000102. Google Scholar

[10]

F. H. Lin and C. Liu, Static and dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289. Google Scholar

[11]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[12]

F. M. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357. Google Scholar

[13]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265. doi: 10.1007/BF00251810. Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Methods Appl. Sci., 32 (2009), 2243. doi: 10.1002/mma.1132. Google Scholar

[15]

G. P. Galdi, "An Introduction to the Mathematical Theory of the NavierStokes Equations I,", Springer-Verlag, (1994). Google Scholar

[16]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371. Google Scholar

[17]

J. L. Ericksen, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265. doi: 10.1007/BF00251810. Google Scholar

[18]

J. L. Ericksen, Anisotropic fluids,, Arch. Rational Mech. Anal., 4 (1960), 231. Google Scholar

[19]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure,, SIAM J. Math. Anal., 21 (1990), 1093. doi: 10.1137/0521061. Google Scholar

[20]

L. C. Evans, "Partial Differential Equations,", Amer. Math. Soc. Providence, (1998). Google Scholar

[21]

M. E. Bogovskii, Solution of some problems of vector analysis, associated with the operators div and grad(in Russian),, Trudy Sem. S. L. Sobolev, (1980), 5. Google Scholar

[22]

M. J. Stephen, Hydrodynamics of liquid crystals,, Phys. Rev. A, 2 (1970), 1558. Google Scholar

[23]

O. Parodi, Stress tensor for a nematic liquid crystal,, J. Phys., 31 (1970), 581. Google Scholar

[24]

P. L. lions, "Mathematical Topics in Fluid Dynamics, Vol.2. Compressible Models,", The Clarendon Press, (1998). Google Scholar

[25]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", North-Holland, (1977). Google Scholar

[26]

S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357. doi: 10.3934/dcdsb.2011.15.357. Google Scholar

[27]

S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1D,, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 539. doi: 10.3934/dcds.2012.32.539. Google Scholar

[28]

X. G. Liu and Z. Y. Zhang, Existence of the flow of liquid crystals system,, Chinese Ann. Math. Ser. A, 30 (2009), 1. Google Scholar

[29]

X. G. Liu and J. Qing, Globally weak solutions to the flow of compressible liquid crystals system,, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 757. Google Scholar

[30]

X. P. Hu and D. H. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals,, Comm. Math. Phys., 296 (2010), 861. doi: 10.1007/s00220-010-1017-8. Google Scholar

[31]

Y. Z. Xie, "The Physics of Liquid Crystals,", Scientific Press, (1988). Google Scholar

[1]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

[2]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[3]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[4]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-29. doi: 10.3934/dcds.2019230

[5]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[6]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[7]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[8]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[9]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[10]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[11]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[12]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[13]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[14]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[15]

Flavia Smarrazzo, Alberto Tesei. Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks & Heterogeneous Media, 2012, 7 (4) : 941-966. doi: 10.3934/nhm.2012.7.941

[16]

Yutian Lei. On finite energy solutions of fractional order equations of the Choquard type. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1497-1515. doi: 10.3934/dcds.2019064

[17]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[18]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[19]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[20]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]