\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On general properties of retarded functional differential equations on manifolds

Abstract / Introduction Related Papers Cited by
  • We investigate general properties, such as existence and uniqueness, continuous dependence on data and continuation, of solutions to retarded functional differential equations with infinite delay on a differentiable manifold.
    Mathematics Subject Classification: 34K05, 34C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Benevieri, A. Calamai, M. Furi and M. P. Pera, Retarded functional differential equations on manifolds and applications to motion problems for forced constrained systems, Adv. Nonlinear Stud., 9 (2009), 199-214.

    [2]

    P. Benevieri, A. Calamai, M. Furi and M. P. PeraA continuation result for forced oscillations of constrained motion problems with infinite delay, to appear in Adv. Nonlinear Stud.

    [3]

    P. Benevieri, A. Calamai, M. Furi and M. P. Pera, On the existence of forced oscillations for the spherical pendulum acted on by a retarded periodic force, J. Dyn. Diff. Equat., 23 (2011), 541-549.doi: 10.1007/s10884-010-9201-2.

    [4]

    G. Bouligand, "Introduction à la Géométrie Infinitésimale Directe,'' Gauthier-Villard, Paris, 1932.

    [5]

    N. Dunford and J. T. Schwartz, "Linear Operators,'' Wiley & Sons, Inc., New York, 1957.

    [6]

    R. Gaines and J. Mawhin, "Coincidence Degree and Nonlinear Differential Equations,'' Lecture Notes in Math., Springer Verlag, Berlin, 568, 1977.

    [7]

    V. Guillemin and A. Pollack, "Differential Topology,'' Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1974.

    [8]

    J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkc. Ekvac., 21 (1978), 11-41.

    [9]

    J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,'' Springer Verlag, New York, 1993.

    [10]

    Y. Hino, S. Murakami and T. Naito, "Functional-Differential Equations with Infinite Delay,'' Lecture Notes in Math., Springer Verlag, Berlin, 1473, 1991.

    [11]

    M. W. Hirsch, "Differential Topology,'' Graduate Texts in Math., Springer Verlag, Berlin, 33, 1976.

    [12]

    J. Mallet-Paret, R. D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 3 (1994), 101-162.

    [13]

    J. M. Milnor, "Topology from the Differentiable Viewpoint,'' Univ. Press of Virginia, Charlottesville, 1965.

    [14]

    J. R. Munkres, "Elementary Differential Topology,'' Princeton University Press, Princeton, New Jersey, 1966.

    [15]

    R. D. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), 263-306.doi: 10.1007/BF02417109.

    [16]

    R. D. Nussbaum, The fixed point index and fixed point theorems, in "Topological methods for ordinary differential equations'' (Montecatini Terme, 1991), Lecture Notes in Math., Springer Verlag, Berlin, 1537 (1993), 143-205.

    [17]

    W. M. Oliva, Functional differential equations on compact manifolds and an approximation theorem, J. Differential Equations, 5 (1969), 483-496.

    [18]

    W. M. Oliva, Functional differential equations-generic theory, in "Dynamical Systems'' (Proc. Internat. Sympos., Brown Univ., Providence, R. I., 1974), Academic Press, New York, (1976), 195-209.

    [19]

    W. M. Oliva and C. Rocha, Reducible volterra and levin-nohel retarded equations with infinite delay, J. Dyn. Diff. Equat., 22 (2010), 509-532.doi: 10.1007/s10884-010-9177-y.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return