-
Previous Article
Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support
- DCDS Home
- This Issue
-
Next Article
Global weak solutions to a general liquid crystals system
Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator
1. | Texas A&M University, College Station, Texas 77843, United States |
References:
[1] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", vol. 25 of Studies in Mathematics and its Applications, (1992).
|
[2] |
J. Chabassier and P. Joly, Energy preserving schemes for nonlinear hamiltonian systems of wave equations. Application to the vibrating piano string,, (2010), (2010).
doi: 10.1016/j.cma.2010.04.013. |
[3] |
A. Comech and A. I. Komech, Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time,, Russ. J. Math. Phys., 18 (2011), 410.
doi: 10.1134/S1061920811040030. |
[4] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", vol. 49 of American Mathematical Society Colloquium Publications, (2002).
|
[5] |
M. S. Èskina, The scattering problem for partial-difference equations,, in Math. Phys. No. 3 (1967) (Russian), (1967), 248.
|
[6] |
C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591.
|
[7] |
C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135.
|
[8] |
D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property,, J. Comput. Appl. Math., 134 (2001), 37.
doi: 10.1016/S0377-0427(00)00527-6. |
[9] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer Study Edition, (1990).
|
[10] |
S. Jiménez and L. Vázquez, Analysis of four numerical schemes for a nonlinear Klein-Gordon equation,, Appl. Math. Comput., 35 (1990), 61. Google Scholar |
[11] |
L. V. Kapitanskiĭ and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations,, Algebra i Analiz, 2 (1990), 114.
|
[12] |
A. I. Komech and A. A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,, Arch. Ration. Mech. Anal., 185 (2007), 105.
doi: 10.1007/s00205-006-0039-z. |
[13] |
A. I. Komech and A. A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2008), 855. Google Scholar |
[14] |
A. I. Komech and A. A. Komech, Global attractor for the Klein-Gordon field coupled to several nonlinear oscillators,, J. Math. Pures Appl., 93 (2010), 91.
doi: 10.1016/j.matpur.2009.08.011. |
[15] |
A. I. Komech and A. A. Komech, On the Titchmarsh convolution theorem for distributions on a circle,, Funktsional. Anal. i Prilozhen., 46 (2012). Google Scholar |
[16] |
E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations,, Algebra i Analiz, 21 (2009), 87.
doi: 10.1090/S1061-0022-2010-01115-4. |
[17] |
B. Y. Levin, "Lectures on Entire Functions,", vol. 150 of Translations of Mathematical Monographs, (1996).
|
[18] |
J.-L. Lions, Supports de produits de composition. I,, C. R. Acad. Sci. Paris, 232 (1951), 1530.
|
[19] |
S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation,, SIAM J. Numer. Anal., 32 (1995), 1839.
doi: 10.1137/0732083. |
[20] |
C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation,, Comm. Pure Appl. Math., 25 (1972), 1.
|
[21] |
I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.
|
[22] |
I. E. Segal, Non-linear semi-groups,, Ann. of Math. (2), 78 (1963), 339.
|
[23] |
A. Soffer, Soliton dynamics and scattering,, in, (2006), 459.
|
[24] |
W. A. Strauss, Decay and asymptotics for $\square u = f(u)$,, J. Functional Analysis, 2 (1968), 409.
|
[25] |
W. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation,, J. Comput. Phys., 28 (1978), 271.
|
[26] |
W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Appl. Anal., 80 (2001), 525.
doi: 10.1080/00036810108841007. |
[27] |
T. Tao, A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations,, Dyn. Partial Differ. Equ., 4 (2007), 1.
|
[28] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", vol. 68 of Applied Mathematical Sciences, (1997).
|
[29] |
E. Titchmarsh, The zeros of certain integral functions,, Proc. of the London Math. Soc., 25 (1926), 283. Google Scholar |
[30] |
J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method,, Geophysics, 51 (1986), 889. Google Scholar |
[31] |
K. Yosida, "Functional Analysis,", vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1980).
|
show all references
References:
[1] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", vol. 25 of Studies in Mathematics and its Applications, (1992).
|
[2] |
J. Chabassier and P. Joly, Energy preserving schemes for nonlinear hamiltonian systems of wave equations. Application to the vibrating piano string,, (2010), (2010).
doi: 10.1016/j.cma.2010.04.013. |
[3] |
A. Comech and A. I. Komech, Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time,, Russ. J. Math. Phys., 18 (2011), 410.
doi: 10.1134/S1061920811040030. |
[4] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", vol. 49 of American Mathematical Society Colloquium Publications, (2002).
|
[5] |
M. S. Èskina, The scattering problem for partial-difference equations,, in Math. Phys. No. 3 (1967) (Russian), (1967), 248.
|
[6] |
C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591.
|
[7] |
C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135.
|
[8] |
D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property,, J. Comput. Appl. Math., 134 (2001), 37.
doi: 10.1016/S0377-0427(00)00527-6. |
[9] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer Study Edition, (1990).
|
[10] |
S. Jiménez and L. Vázquez, Analysis of four numerical schemes for a nonlinear Klein-Gordon equation,, Appl. Math. Comput., 35 (1990), 61. Google Scholar |
[11] |
L. V. Kapitanskiĭ and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations,, Algebra i Analiz, 2 (1990), 114.
|
[12] |
A. I. Komech and A. A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,, Arch. Ration. Mech. Anal., 185 (2007), 105.
doi: 10.1007/s00205-006-0039-z. |
[13] |
A. I. Komech and A. A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2008), 855. Google Scholar |
[14] |
A. I. Komech and A. A. Komech, Global attractor for the Klein-Gordon field coupled to several nonlinear oscillators,, J. Math. Pures Appl., 93 (2010), 91.
doi: 10.1016/j.matpur.2009.08.011. |
[15] |
A. I. Komech and A. A. Komech, On the Titchmarsh convolution theorem for distributions on a circle,, Funktsional. Anal. i Prilozhen., 46 (2012). Google Scholar |
[16] |
E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations,, Algebra i Analiz, 21 (2009), 87.
doi: 10.1090/S1061-0022-2010-01115-4. |
[17] |
B. Y. Levin, "Lectures on Entire Functions,", vol. 150 of Translations of Mathematical Monographs, (1996).
|
[18] |
J.-L. Lions, Supports de produits de composition. I,, C. R. Acad. Sci. Paris, 232 (1951), 1530.
|
[19] |
S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation,, SIAM J. Numer. Anal., 32 (1995), 1839.
doi: 10.1137/0732083. |
[20] |
C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation,, Comm. Pure Appl. Math., 25 (1972), 1.
|
[21] |
I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.
|
[22] |
I. E. Segal, Non-linear semi-groups,, Ann. of Math. (2), 78 (1963), 339.
|
[23] |
A. Soffer, Soliton dynamics and scattering,, in, (2006), 459.
|
[24] |
W. A. Strauss, Decay and asymptotics for $\square u = f(u)$,, J. Functional Analysis, 2 (1968), 409.
|
[25] |
W. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation,, J. Comput. Phys., 28 (1978), 271.
|
[26] |
W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Appl. Anal., 80 (2001), 525.
doi: 10.1080/00036810108841007. |
[27] |
T. Tao, A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations,, Dyn. Partial Differ. Equ., 4 (2007), 1.
|
[28] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", vol. 68 of Applied Mathematical Sciences, (1997).
|
[29] |
E. Titchmarsh, The zeros of certain integral functions,, Proc. of the London Math. Soc., 25 (1926), 283. Google Scholar |
[30] |
J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method,, Geophysics, 51 (1986), 889. Google Scholar |
[31] |
K. Yosida, "Functional Analysis,", vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1980).
|
[1] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[2] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[3] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[4] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[5] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[6] |
Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230 |
[7] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[8] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[9] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[10] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[11] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[12] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[13] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[14] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[15] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[16] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[17] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[18] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[19] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[20] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]