July  2013, 33(7): 2711-2755. doi: 10.3934/dcds.2013.33.2711

Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator

1. 

Texas A&M University, College Station, Texas 77843, United States

Received  April 2012 Revised  October 2012 Published  January 2013

We consider the $\mathbf{U}(1)$-invariant nonlinear Klein-Gordon equation in discrete space and discrete time, which is the discretization of the nonlinear continuous Klein-Gordon equation. To obtain this equation, we use the energy-conserving finite-difference scheme of Strauss-Vazquez. We prove that each finite energy solution converges as $T → ± ∞$ to the finite-dimensional set of all multifrequency solitary wave solutions with one, two, and four frequencies. The components of the solitary manifold corresponding to the solitary waves of the first two types are generically two-dimensional, while the component corresponding to the last type is generically four-dimensional. The attraction to the set of solitary waves is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent radiation. For the proof, we develop the well-posedness for the nonlinear wave equation in discrete space-time, apply the technique of quasimeasures, and also obtain the version of the Titchmarsh convolution theorem for distributions on the circle.
Citation: Andrew Comech. Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2711-2755. doi: 10.3934/dcds.2013.33.2711
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", vol. 25 of Studies in Mathematics and its Applications, (1992).   Google Scholar

[2]

J. Chabassier and P. Joly, Energy preserving schemes for nonlinear hamiltonian systems of wave equations. Application to the vibrating piano string,, (2010), (2010).  doi: 10.1016/j.cma.2010.04.013.  Google Scholar

[3]

A. Comech and A. I. Komech, Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time,, Russ. J. Math. Phys., 18 (2011), 410.  doi: 10.1134/S1061920811040030.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", vol. 49 of American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[5]

M. S. Èskina, The scattering problem for partial-difference equations,, in Math. Phys. No. 3 (1967) (Russian), (1967), 248.   Google Scholar

[6]

C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591.   Google Scholar

[7]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135.   Google Scholar

[8]

D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property,, J. Comput. Appl. Math., 134 (2001), 37.  doi: 10.1016/S0377-0427(00)00527-6.  Google Scholar

[9]

L. Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer Study Edition, (1990).   Google Scholar

[10]

S. Jiménez and L. Vázquez, Analysis of four numerical schemes for a nonlinear Klein-Gordon equation,, Appl. Math. Comput., 35 (1990), 61.   Google Scholar

[11]

L. V. Kapitanskiĭ and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations,, Algebra i Analiz, 2 (1990), 114.   Google Scholar

[12]

A. I. Komech and A. A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,, Arch. Ration. Mech. Anal., 185 (2007), 105.  doi: 10.1007/s00205-006-0039-z.  Google Scholar

[13]

A. I. Komech and A. A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2008), 855.   Google Scholar

[14]

A. I. Komech and A. A. Komech, Global attractor for the Klein-Gordon field coupled to several nonlinear oscillators,, J. Math. Pures Appl., 93 (2010), 91.  doi: 10.1016/j.matpur.2009.08.011.  Google Scholar

[15]

A. I. Komech and A. A. Komech, On the Titchmarsh convolution theorem for distributions on a circle,, Funktsional. Anal. i Prilozhen., 46 (2012).   Google Scholar

[16]

E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations,, Algebra i Analiz, 21 (2009), 87.  doi: 10.1090/S1061-0022-2010-01115-4.  Google Scholar

[17]

B. Y. Levin, "Lectures on Entire Functions,", vol. 150 of Translations of Mathematical Monographs, (1996).   Google Scholar

[18]

J.-L. Lions, Supports de produits de composition. I,, C. R. Acad. Sci. Paris, 232 (1951), 1530.   Google Scholar

[19]

S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation,, SIAM J. Numer. Anal., 32 (1995), 1839.  doi: 10.1137/0732083.  Google Scholar

[20]

C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation,, Comm. Pure Appl. Math., 25 (1972), 1.   Google Scholar

[21]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.   Google Scholar

[22]

I. E. Segal, Non-linear semi-groups,, Ann. of Math. (2), 78 (1963), 339.   Google Scholar

[23]

A. Soffer, Soliton dynamics and scattering,, in, (2006), 459.   Google Scholar

[24]

W. A. Strauss, Decay and asymptotics for $\square u = f(u)$,, J. Functional Analysis, 2 (1968), 409.   Google Scholar

[25]

W. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation,, J. Comput. Phys., 28 (1978), 271.   Google Scholar

[26]

W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Appl. Anal., 80 (2001), 525.  doi: 10.1080/00036810108841007.  Google Scholar

[27]

T. Tao, A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations,, Dyn. Partial Differ. Equ., 4 (2007), 1.   Google Scholar

[28]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", vol. 68 of Applied Mathematical Sciences, (1997).   Google Scholar

[29]

E. Titchmarsh, The zeros of certain integral functions,, Proc. of the London Math. Soc., 25 (1926), 283.   Google Scholar

[30]

J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method,, Geophysics, 51 (1986), 889.   Google Scholar

[31]

K. Yosida, "Functional Analysis,", vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1980).   Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", vol. 25 of Studies in Mathematics and its Applications, (1992).   Google Scholar

[2]

J. Chabassier and P. Joly, Energy preserving schemes for nonlinear hamiltonian systems of wave equations. Application to the vibrating piano string,, (2010), (2010).  doi: 10.1016/j.cma.2010.04.013.  Google Scholar

[3]

A. Comech and A. I. Komech, Well-posedness and the energy and charge conservation for nonlinear wave equations in discrete space-time,, Russ. J. Math. Phys., 18 (2011), 410.  doi: 10.1134/S1061920811040030.  Google Scholar

[4]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", vol. 49 of American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[5]

M. S. Èskina, The scattering problem for partial-difference equations,, in Math. Phys. No. 3 (1967) (Russian), (1967), 248.   Google Scholar

[6]

C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591.   Google Scholar

[7]

C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds,, Nonlinearity, 4 (1991), 135.   Google Scholar

[8]

D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property,, J. Comput. Appl. Math., 134 (2001), 37.  doi: 10.1016/S0377-0427(00)00527-6.  Google Scholar

[9]

L. Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer Study Edition, (1990).   Google Scholar

[10]

S. Jiménez and L. Vázquez, Analysis of four numerical schemes for a nonlinear Klein-Gordon equation,, Appl. Math. Comput., 35 (1990), 61.   Google Scholar

[11]

L. V. Kapitanskiĭ and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations,, Algebra i Analiz, 2 (1990), 114.   Google Scholar

[12]

A. I. Komech and A. A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,, Arch. Ration. Mech. Anal., 185 (2007), 105.  doi: 10.1007/s00205-006-0039-z.  Google Scholar

[13]

A. I. Komech and A. A. Komech, Global attraction to solitary waves for Klein-Gordon equation with mean field interaction,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2008), 855.   Google Scholar

[14]

A. I. Komech and A. A. Komech, Global attractor for the Klein-Gordon field coupled to several nonlinear oscillators,, J. Math. Pures Appl., 93 (2010), 91.  doi: 10.1016/j.matpur.2009.08.011.  Google Scholar

[15]

A. I. Komech and A. A. Komech, On the Titchmarsh convolution theorem for distributions on a circle,, Funktsional. Anal. i Prilozhen., 46 (2012).   Google Scholar

[16]

E. A. Kopylova, Dispersive estimates for discrete Schrödinger and Klein-Gordon equations,, Algebra i Analiz, 21 (2009), 87.  doi: 10.1090/S1061-0022-2010-01115-4.  Google Scholar

[17]

B. Y. Levin, "Lectures on Entire Functions,", vol. 150 of Translations of Mathematical Monographs, (1996).   Google Scholar

[18]

J.-L. Lions, Supports de produits de composition. I,, C. R. Acad. Sci. Paris, 232 (1951), 1530.   Google Scholar

[19]

S. Li and L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation,, SIAM J. Numer. Anal., 32 (1995), 1839.  doi: 10.1137/0732083.  Google Scholar

[20]

C. S. Morawetz and W. A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation,, Comm. Pure Appl. Math., 25 (1972), 1.   Google Scholar

[21]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.   Google Scholar

[22]

I. E. Segal, Non-linear semi-groups,, Ann. of Math. (2), 78 (1963), 339.   Google Scholar

[23]

A. Soffer, Soliton dynamics and scattering,, in, (2006), 459.   Google Scholar

[24]

W. A. Strauss, Decay and asymptotics for $\square u = f(u)$,, J. Functional Analysis, 2 (1968), 409.   Google Scholar

[25]

W. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation,, J. Comput. Phys., 28 (1978), 271.   Google Scholar

[26]

W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators,, Appl. Anal., 80 (2001), 525.  doi: 10.1080/00036810108841007.  Google Scholar

[27]

T. Tao, A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations,, Dyn. Partial Differ. Equ., 4 (2007), 1.   Google Scholar

[28]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", vol. 68 of Applied Mathematical Sciences, (1997).   Google Scholar

[29]

E. Titchmarsh, The zeros of certain integral functions,, Proc. of the London Math. Soc., 25 (1926), 283.   Google Scholar

[30]

J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method,, Geophysics, 51 (1986), 889.   Google Scholar

[31]

K. Yosida, "Functional Analysis,", vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1980).   Google Scholar

[1]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[2]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[3]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[4]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[5]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[6]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[8]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[9]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[10]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[11]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[12]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[13]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[14]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[15]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[16]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[17]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[18]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[19]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[20]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]