-
Previous Article
Asymptotics of the $s$-perimeter as $s\searrow 0$
- DCDS Home
- This Issue
-
Next Article
Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator
Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support
1. | Univ Lille Nord de France, 59000 Lille |
References:
[1] |
Academic Press, New York e.a., 1975. |
[2] |
Prikl. Mat. Meh., 37 (1973), 690-705 (Russian); English translation, J. Appl. Math. Mech., 37 (1973), 651-665. |
[3] |
DCDS-B, 10 (2008), 1-18.
doi: 10.3934/dcdsb.2008.10.1. |
[4] |
J. Math. Fluid Mech., 14 (2012), 117-139.
doi: 10.1007/s00021-010-0040-z. |
[5] |
IASME Transactions, 6 (2005), 900-904. |
[6] |
in "Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics" Chalkida, Greeece, (2006), 117-125. Google Scholar |
[7] |
WSEAS Transactions on Math., 5 (2006), 252-259. |
[8] |
Banach Center Publications, 81 (2008), 119-132.
doi: 10.4064/bc81-0-8. |
[9] |
in "Advances in Mathematical Fluid Mechanics. Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday" (eds. R. Rannacher and A. Sequeira), Springer (2010), 191-214.
doi: 10.1007/978-3-642-04068-9_12. |
[10] |
SIAM J. Math. Anal., 41 (2009), 886-922.
doi: 10.1137/080723831. |
[11] |
P. Deuring, A representation formula for the velocity part of 3D time-dependent Oseen flows,, accepted by J. Math. Fluid Mechanics., (). Google Scholar |
[12] |
P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbbR^3 $: Spatial decay of the velocity,, to appear in Mathematica Bohemica., (). Google Scholar |
[13] |
P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity,, submitted., (). Google Scholar |
[14] |
Math. Nachr., 269/270 (2004), 86-115.
doi: 10.1002/mana.200310167. |
[15] |
SIAM J. Math. Anal., 43 (2011), 705-738.
doi: 10.1137/100786198. |
[16] |
Indiana Univ. Math. J., 53 (2004), 1291-1330.
doi: 10.1512/iumj.2004.53.2463. |
[17] |
J. Math. Fluid Mech., 7 (2005), 339-367.
doi: 10.1007/s00021-004-0132-8. |
[18] |
Math. Z., 211 (1992), 409-447.
doi: 10.1007/BF02571437. |
[19] |
Arch. Rational Mech. Anal., 19 (1965), 363-406. |
[20] |
Noordhoff, Leyden, 1977. |
[21] |
(corr. 2nd print.), Springer, New York e.a., 1998.
doi: 10.1007/978-1-4612-5364-8. |
[22] |
Springer, New York e.a., 1994.
doi: 10.1007/978-1-4612-5364-8. |
[23] |
Acta Math., 129 (1972), 11-34. |
[24] |
Indiana Univ. Math. J., 29 (1980), 639-681.
doi: 10.1512/iumj.1980.29.29048. |
[25] |
SIAM J. Math. Anal., 3 (1972), 506-511. |
[26] |
in "Approximation Methods for Navier-Stokes Problems" (ed. R. Rautmann), Lecture Notes in Math., 771, Springer (1979), 287-298. |
[27] |
Math. Ann., 310 (1998), 1-45.
doi: 10.1007/s002080050134. |
[28] |
J. Math. Soc. Japan, 53 (2001), 59-111.
doi: 10.2969/jmsj/05310059. |
[29] |
J. Math. Soc. Japan, 27 (1975), 294-327. |
[30] |
SIAM J. Math. Anal., 12 (1981), 201-228.
doi: 10.1137/0512021. |
[31] |
Hiroshima Math. J., 12 (1982), 115-140. |
[32] |
J. Math. Soc. Japan, 36 (1984), 497-522.
doi: 10.2969/jmsj/03630497. |
[33] |
American J. Math., 113 (1991), 293-373.
doi: 10.2307/2374910. |
[34] |
Quarterly Appl. Math., 57 (1999), 117-155. |
[35] |
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231 (Russian); English translation, J. Soviet Math., 8 (1977), 467-529. |
[36] |
Nonlinear Anal., 37 (1999), 751-789.
doi: 10.1016/S0362-546X(98)00070-4. |
[37] |
AMS Chelsea Publishing, Providence R.I., 2001. |
[38] |
(6th ed.), Springer, Berlin e.a., 1980. |
show all references
References:
[1] |
Academic Press, New York e.a., 1975. |
[2] |
Prikl. Mat. Meh., 37 (1973), 690-705 (Russian); English translation, J. Appl. Math. Mech., 37 (1973), 651-665. |
[3] |
DCDS-B, 10 (2008), 1-18.
doi: 10.3934/dcdsb.2008.10.1. |
[4] |
J. Math. Fluid Mech., 14 (2012), 117-139.
doi: 10.1007/s00021-010-0040-z. |
[5] |
IASME Transactions, 6 (2005), 900-904. |
[6] |
in "Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics" Chalkida, Greeece, (2006), 117-125. Google Scholar |
[7] |
WSEAS Transactions on Math., 5 (2006), 252-259. |
[8] |
Banach Center Publications, 81 (2008), 119-132.
doi: 10.4064/bc81-0-8. |
[9] |
in "Advances in Mathematical Fluid Mechanics. Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday" (eds. R. Rannacher and A. Sequeira), Springer (2010), 191-214.
doi: 10.1007/978-3-642-04068-9_12. |
[10] |
SIAM J. Math. Anal., 41 (2009), 886-922.
doi: 10.1137/080723831. |
[11] |
P. Deuring, A representation formula for the velocity part of 3D time-dependent Oseen flows,, accepted by J. Math. Fluid Mechanics., (). Google Scholar |
[12] |
P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbbR^3 $: Spatial decay of the velocity,, to appear in Mathematica Bohemica., (). Google Scholar |
[13] |
P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity,, submitted., (). Google Scholar |
[14] |
Math. Nachr., 269/270 (2004), 86-115.
doi: 10.1002/mana.200310167. |
[15] |
SIAM J. Math. Anal., 43 (2011), 705-738.
doi: 10.1137/100786198. |
[16] |
Indiana Univ. Math. J., 53 (2004), 1291-1330.
doi: 10.1512/iumj.2004.53.2463. |
[17] |
J. Math. Fluid Mech., 7 (2005), 339-367.
doi: 10.1007/s00021-004-0132-8. |
[18] |
Math. Z., 211 (1992), 409-447.
doi: 10.1007/BF02571437. |
[19] |
Arch. Rational Mech. Anal., 19 (1965), 363-406. |
[20] |
Noordhoff, Leyden, 1977. |
[21] |
(corr. 2nd print.), Springer, New York e.a., 1998.
doi: 10.1007/978-1-4612-5364-8. |
[22] |
Springer, New York e.a., 1994.
doi: 10.1007/978-1-4612-5364-8. |
[23] |
Acta Math., 129 (1972), 11-34. |
[24] |
Indiana Univ. Math. J., 29 (1980), 639-681.
doi: 10.1512/iumj.1980.29.29048. |
[25] |
SIAM J. Math. Anal., 3 (1972), 506-511. |
[26] |
in "Approximation Methods for Navier-Stokes Problems" (ed. R. Rautmann), Lecture Notes in Math., 771, Springer (1979), 287-298. |
[27] |
Math. Ann., 310 (1998), 1-45.
doi: 10.1007/s002080050134. |
[28] |
J. Math. Soc. Japan, 53 (2001), 59-111.
doi: 10.2969/jmsj/05310059. |
[29] |
J. Math. Soc. Japan, 27 (1975), 294-327. |
[30] |
SIAM J. Math. Anal., 12 (1981), 201-228.
doi: 10.1137/0512021. |
[31] |
Hiroshima Math. J., 12 (1982), 115-140. |
[32] |
J. Math. Soc. Japan, 36 (1984), 497-522.
doi: 10.2969/jmsj/03630497. |
[33] |
American J. Math., 113 (1991), 293-373.
doi: 10.2307/2374910. |
[34] |
Quarterly Appl. Math., 57 (1999), 117-155. |
[35] |
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231 (Russian); English translation, J. Soviet Math., 8 (1977), 467-529. |
[36] |
Nonlinear Anal., 37 (1999), 751-789.
doi: 10.1016/S0362-546X(98)00070-4. |
[37] |
AMS Chelsea Publishing, Providence R.I., 2001. |
[38] |
(6th ed.), Springer, Berlin e.a., 1980. |
[1] |
Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044 |
[2] |
Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021062 |
[3] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[4] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[5] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[6] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002 |
[7] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[8] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021071 |
[9] |
Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218 |
[10] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[11] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[12] |
Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021095 |
[13] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[14] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[15] |
Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021043 |
[16] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065 |
[17] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[18] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[19] |
Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021048 |
[20] |
Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]