-
Previous Article
Generalized linear differential equations in a Banach space: Continuous dependence on a parameter
- DCDS Home
- This Issue
-
Next Article
Existence and enclosure of solutions to noncoercive systems of inequalities with multivalued mappings and non-power growths
On the periodic solutions of a class of Duffing differential equations
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain |
2. | Departamento de Matemática, Ibilce -UNESP, 15054-000 São José do Rio Preto, Brazil |
References:
[1] |
Proc. Amer. Math. Soc., 135 (2007), 3925-3932. Google Scholar |
[2] |
Nonlinearity, 21 (2008), 2485-2503. Google Scholar |
[3] |
Sammlung Viewg Heft, Viewg, Braunschweig, 41/42 (1918). Google Scholar |
[4] |
in: "Equadiff, Brno. Proceedings, Brno: Masaryk University,'' 9 (1997), 115-145. Google Scholar |
[5] |
Boo. Uni. Mat. Ital B, 3 (1989), 533-546. |
[6] |
Universitext, Springer, 1991. |
show all references
References:
[1] |
Proc. Amer. Math. Soc., 135 (2007), 3925-3932. Google Scholar |
[2] |
Nonlinearity, 21 (2008), 2485-2503. Google Scholar |
[3] |
Sammlung Viewg Heft, Viewg, Braunschweig, 41/42 (1918). Google Scholar |
[4] |
in: "Equadiff, Brno. Proceedings, Brno: Masaryk University,'' 9 (1997), 115-145. Google Scholar |
[5] |
Boo. Uni. Mat. Ital B, 3 (1989), 533-546. |
[6] |
Universitext, Springer, 1991. |
[1] |
Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793 |
[2] |
S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604 |
[3] |
Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557 |
[4] |
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 |
[5] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[6] |
Cyrine Fitouri, Alain Haraux. Boundedness and stability for the damped and forced single well Duffing equation. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 211-223. doi: 10.3934/dcds.2013.33.211 |
[7] |
Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203 |
[8] |
Jaume Llibre, Clàudia Valls. Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 779-790. doi: 10.3934/dcds.2011.30.779 |
[9] |
Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961 |
[10] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[11] |
Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099 |
[12] |
Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 |
[13] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[14] |
Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065 |
[15] |
Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117 |
[16] |
Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365 |
[17] |
Zhaosheng Feng, Goong Chen, Sze-Bi Hsu. A qualitative study of the damped duffing equation and applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1097-1112. doi: 10.3934/dcdsb.2006.6.1097 |
[18] |
S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660 |
[19] |
Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665 |
[20] |
Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]