-
Previous Article
Generalized linear differential equations in a Banach space: Continuous dependence on a parameter
- DCDS Home
- This Issue
-
Next Article
Existence and enclosure of solutions to noncoercive systems of inequalities with multivalued mappings and non-power growths
On the periodic solutions of a class of Duffing differential equations
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain |
2. | Departamento de Matemática, Ibilce -UNESP, 15054-000 São José do Rio Preto, Brazil |
References:
[1] |
H. B. Chen and Y. Li, Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities,, Proc. Amer. Math. Soc., 135 (2007), 3925. Google Scholar |
[2] |
H. B. Chen and Y. Li, Bifurcation and stability of periodic solutions of Duffing equations,, Nonlinearity, 21 (2008), 2485. Google Scholar |
[3] |
G. Duffing, Erzwungen Schwingungen bei vernäderlicher Eigenfrequenz undihre technisch Bedeutung,, Sammlung Viewg Heft, 41/42 (1918). Google Scholar |
[4] |
J. Mawhin, Seventy-five years of global analysis around the forcedpendulum equation,, in:, 9 (1997), 115. Google Scholar |
[5] |
R. Ortega, Stability and index of periodic solutions of an equation ofDuffing type,, Boo. Uni. Mat. Ital B, 3 (1989), 533.
|
[6] |
F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,'', Universitext, (1991).
|
show all references
References:
[1] |
H. B. Chen and Y. Li, Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities,, Proc. Amer. Math. Soc., 135 (2007), 3925. Google Scholar |
[2] |
H. B. Chen and Y. Li, Bifurcation and stability of periodic solutions of Duffing equations,, Nonlinearity, 21 (2008), 2485. Google Scholar |
[3] |
G. Duffing, Erzwungen Schwingungen bei vernäderlicher Eigenfrequenz undihre technisch Bedeutung,, Sammlung Viewg Heft, 41/42 (1918). Google Scholar |
[4] |
J. Mawhin, Seventy-five years of global analysis around the forcedpendulum equation,, in:, 9 (1997), 115. Google Scholar |
[5] |
R. Ortega, Stability and index of periodic solutions of an equation ofDuffing type,, Boo. Uni. Mat. Ital B, 3 (1989), 533.
|
[6] |
F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,'', Universitext, (1991).
|
[1] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[2] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[3] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[4] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[5] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[6] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[7] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[8] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[9] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[10] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[11] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[12] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[13] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[14] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[15] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[16] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[17] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[18] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[19] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[20] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]