• Previous Article
    Generalized linear differential equations in a Banach space: Continuous dependence on a parameter
  • DCDS Home
  • This Issue
  • Next Article
    Existence and enclosure of solutions to noncoercive systems of inequalities with multivalued mappings and non-power growths
January  2013, 33(1): 277-282. doi: 10.3934/dcds.2013.33.277

On the periodic solutions of a class of Duffing differential equations

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

2. 

Departamento de Matemática, Ibilce -UNESP, 15054-000 São José do Rio Preto, Brazil

Received  February 2011 Revised  December 2011 Published  September 2012

In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation $x''+ \epsilon C x'+ \epsilon^2 A(t) x +b(t) x^3 = \epsilon^3 \Lambda h(t)$, where $C>0$, $\epsilon>0$ and $\Lambda$ are real parameter, $A(t)$, $b(t)$ and $h(t)$ are continuous $T$--periodic functions and $\epsilon$ is sufficiently small. Our results are proved using the averaging method of first order.
Citation: Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277
References:
[1]

H. B. Chen and Y. Li, Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities,, Proc. Amer. Math. Soc., 135 (2007), 3925.   Google Scholar

[2]

H. B. Chen and Y. Li, Bifurcation and stability of periodic solutions of Duffing equations,, Nonlinearity, 21 (2008), 2485.   Google Scholar

[3]

G. Duffing, Erzwungen Schwingungen bei vernäderlicher Eigenfrequenz undihre technisch Bedeutung,, Sammlung Viewg Heft, 41/42 (1918).   Google Scholar

[4]

J. Mawhin, Seventy-five years of global analysis around the forcedpendulum equation,, in:, 9 (1997), 115.   Google Scholar

[5]

R. Ortega, Stability and index of periodic solutions of an equation ofDuffing type,, Boo. Uni. Mat. Ital B, 3 (1989), 533.   Google Scholar

[6]

F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,'', Universitext, (1991).   Google Scholar

show all references

References:
[1]

H. B. Chen and Y. Li, Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities,, Proc. Amer. Math. Soc., 135 (2007), 3925.   Google Scholar

[2]

H. B. Chen and Y. Li, Bifurcation and stability of periodic solutions of Duffing equations,, Nonlinearity, 21 (2008), 2485.   Google Scholar

[3]

G. Duffing, Erzwungen Schwingungen bei vernäderlicher Eigenfrequenz undihre technisch Bedeutung,, Sammlung Viewg Heft, 41/42 (1918).   Google Scholar

[4]

J. Mawhin, Seventy-five years of global analysis around the forcedpendulum equation,, in:, 9 (1997), 115.   Google Scholar

[5]

R. Ortega, Stability and index of periodic solutions of an equation ofDuffing type,, Boo. Uni. Mat. Ital B, 3 (1989), 533.   Google Scholar

[6]

F. Verhulst, "Nonlinear Differential Equations and Dynamical Systems,'', Universitext, (1991).   Google Scholar

[1]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[2]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[3]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[4]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[5]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[6]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[7]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[8]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[11]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[14]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[17]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[18]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[19]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]