-
Previous Article
Smoothness of the flow map for low-regularity solutions of the Camassa-Holm equations
- DCDS Home
- This Issue
-
Next Article
Pointwise spatial decay of time-dependent Oseen flows: The case of data with noncompact support
Asymptotics of the $s$-perimeter as $s\searrow 0$
1. | SISSA - International School for Advanced Studies, Sector of Mathematical Analysis Via Bonomea, 265, 34136 Trieste, Italy |
2. | University of Texas at Austin, Department of Mathematics, 2515 Speedway Stop C1200, Austin, TX 78712-1202 |
3. | Università degli Studi di Parma, Dipartimento di Matematica Campus - Parco Area delle Scienze, 53/A, 43124 Parma, Italy |
4. | Università degli Studi di Milano, Dipartimento di Matematica Via Saldini, 50, 20133 Milano |
References:
[1] |
Manuscripta Math., 134 (2011), 377-403.
doi: 10.1007/s00229-010-0399-4. |
[2] |
B. Barrios Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), (). Google Scholar |
[3] |
Comm. Pure Appl. Math., 63 (2010), 1111-1144.
doi: 10.1002/cpa.20331. |
[4] |
Arch. Ration. Mech. Anal., 195 (2010), 1-23.
doi: 10.1007/s00205-008-0181-x. |
[5] |
Calc. Var. Partial Differential Equations, 41 (2011), 203-240.
doi: 10.1007/s00526-010-0359-6. |
[6] |
L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments,, Preprint, (): 11. Google Scholar |
[7] |
M. C. Caputo and N. Guillen, Regularity for non-local almost minimal boundaries and applications,, Preprint, (). Google Scholar |
[8] |
Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[9] |
G. Franzina and E. Valdinoci, Geometric analysis of fractional phase transition interfaces,, in, (). Google Scholar |
[10] |
J. Funct. Anal., 195 (2002), 230-238.
doi: 10.1006/jfan.2002.3955. |
[11] |
O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm,, Preprint, (). Google Scholar |
[12] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479-500.
doi: 10.1016/j.anihpc.2012.01.006. |
[13] |
O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension $2$,, Calc. Var. Partial Differential Equations, ().
doi: 10.1007/s00526-012-0539-7. |
[14] |
SIAM J. Math. Anal., 21 (1990), 1281-1304.
doi: 10.1137/0521071. |
[15] |
Japan J. Industrial Appl. Math., 8 (1991), 175-201.
doi: 10.1007/BF03167679. |
show all references
References:
[1] |
Manuscripta Math., 134 (2011), 377-403.
doi: 10.1007/s00229-010-0399-4. |
[2] |
B. Barrios Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), (). Google Scholar |
[3] |
Comm. Pure Appl. Math., 63 (2010), 1111-1144.
doi: 10.1002/cpa.20331. |
[4] |
Arch. Ration. Mech. Anal., 195 (2010), 1-23.
doi: 10.1007/s00205-008-0181-x. |
[5] |
Calc. Var. Partial Differential Equations, 41 (2011), 203-240.
doi: 10.1007/s00526-010-0359-6. |
[6] |
L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments,, Preprint, (): 11. Google Scholar |
[7] |
M. C. Caputo and N. Guillen, Regularity for non-local almost minimal boundaries and applications,, Preprint, (). Google Scholar |
[8] |
Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[9] |
G. Franzina and E. Valdinoci, Geometric analysis of fractional phase transition interfaces,, in, (). Google Scholar |
[10] |
J. Funct. Anal., 195 (2002), 230-238.
doi: 10.1006/jfan.2002.3955. |
[11] |
O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm,, Preprint, (). Google Scholar |
[12] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479-500.
doi: 10.1016/j.anihpc.2012.01.006. |
[13] |
O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension $2$,, Calc. Var. Partial Differential Equations, ().
doi: 10.1007/s00526-012-0539-7. |
[14] |
SIAM J. Math. Anal., 21 (1990), 1281-1304.
doi: 10.1137/0521071. |
[15] |
Japan J. Industrial Appl. Math., 8 (1991), 175-201.
doi: 10.1007/BF03167679. |
[1] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021016 |
[2] |
Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058 |
[3] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[4] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[5] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[6] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[7] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[8] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[9] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[10] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385 |
[11] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[12] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2653-2676. doi: 10.3934/dcds.2020379 |
[13] |
Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021025 |
[14] |
Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021027 |
[15] |
George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021004 |
[16] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022 |
[17] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[18] |
Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069 |
[19] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[20] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]