July  2013, 33(7): 2777-2790. doi: 10.3934/dcds.2013.33.2777

Asymptotics of the $s$-perimeter as $s\searrow 0$

1. 

SISSA - International School for Advanced Studies, Sector of Mathematical Analysis Via Bonomea, 265, 34136 Trieste, Italy

2. 

University of Texas at Austin, Department of Mathematics, 2515 Speedway Stop C1200, Austin, TX 78712-1202

3. 

Università degli Studi di Parma, Dipartimento di Matematica Campus - Parco Area delle Scienze, 53/A, 43124 Parma, Italy

4. 

Università degli Studi di Milano, Dipartimento di Matematica Via Saldini, 50, 20133 Milano

Received  April 2012 Revised  August 2012 Published  January 2013

We deal with the asymptotic behavior of the $s$-perimeter of a set $E$ inside a domain $\Omega$ as $s\searrow0$. We prove necessary and sufficient conditions for the existence of such limit, by also providing an explicit formulation in terms of the Lebesgue measure of $E$ and $\Omega$. Moreover, we construct examples of sets for which the limit does not exist.
Citation: Serena Dipierro, Alessio Figalli, Giampiero Palatucci, Enrico Valdinoci. Asymptotics of the $s$-perimeter as $s\searrow 0$. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2777-2790. doi: 10.3934/dcds.2013.33.2777
References:
[1]

Manuscripta Math., 134 (2011), 377-403. doi: 10.1007/s00229-010-0399-4.  Google Scholar

[2]

B. Barrios Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), ().   Google Scholar

[3]

Comm. Pure Appl. Math., 63 (2010), 1111-1144. doi: 10.1002/cpa.20331.  Google Scholar

[4]

Arch. Ration. Mech. Anal., 195 (2010), 1-23. doi: 10.1007/s00205-008-0181-x.  Google Scholar

[5]

Calc. Var. Partial Differential Equations, 41 (2011), 203-240. doi: 10.1007/s00526-010-0359-6.  Google Scholar

[6]

L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments,, Preprint, (): 11.   Google Scholar

[7]

M. C. Caputo and N. Guillen, Regularity for non-local almost minimal boundaries and applications,, Preprint, ().   Google Scholar

[8]

Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

G. Franzina and E. Valdinoci, Geometric analysis of fractional phase transition interfaces,, in, ().   Google Scholar

[10]

J. Funct. Anal., 195 (2002), 230-238. doi: 10.1006/jfan.2002.3955.  Google Scholar

[11]

O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm,, Preprint, ().   Google Scholar

[12]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479-500. doi: 10.1016/j.anihpc.2012.01.006.  Google Scholar

[13]

O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension $2$,, Calc. Var. Partial Differential Equations, ().  doi: 10.1007/s00526-012-0539-7.  Google Scholar

[14]

SIAM J. Math. Anal., 21 (1990), 1281-1304. doi: 10.1137/0521071.  Google Scholar

[15]

Japan J. Industrial Appl. Math., 8 (1991), 175-201. doi: 10.1007/BF03167679.  Google Scholar

show all references

References:
[1]

Manuscripta Math., 134 (2011), 377-403. doi: 10.1007/s00229-010-0399-4.  Google Scholar

[2]

B. Barrios Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), ().   Google Scholar

[3]

Comm. Pure Appl. Math., 63 (2010), 1111-1144. doi: 10.1002/cpa.20331.  Google Scholar

[4]

Arch. Ration. Mech. Anal., 195 (2010), 1-23. doi: 10.1007/s00205-008-0181-x.  Google Scholar

[5]

Calc. Var. Partial Differential Equations, 41 (2011), 203-240. doi: 10.1007/s00526-010-0359-6.  Google Scholar

[6]

L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments,, Preprint, (): 11.   Google Scholar

[7]

M. C. Caputo and N. Guillen, Regularity for non-local almost minimal boundaries and applications,, Preprint, ().   Google Scholar

[8]

Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

G. Franzina and E. Valdinoci, Geometric analysis of fractional phase transition interfaces,, in, ().   Google Scholar

[10]

J. Funct. Anal., 195 (2002), 230-238. doi: 10.1006/jfan.2002.3955.  Google Scholar

[11]

O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm,, Preprint, ().   Google Scholar

[12]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479-500. doi: 10.1016/j.anihpc.2012.01.006.  Google Scholar

[13]

O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension $2$,, Calc. Var. Partial Differential Equations, ().  doi: 10.1007/s00526-012-0539-7.  Google Scholar

[14]

SIAM J. Math. Anal., 21 (1990), 1281-1304. doi: 10.1137/0521071.  Google Scholar

[15]

Japan J. Industrial Appl. Math., 8 (1991), 175-201. doi: 10.1007/BF03167679.  Google Scholar

[1]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[2]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[3]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[4]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[5]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[6]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[8]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[9]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[10]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

[11]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[12]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2653-2676. doi: 10.3934/dcds.2020379

[13]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[14]

Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021027

[15]

George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021004

[16]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[17]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[18]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[19]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[20]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (29)

[Back to Top]