\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Smoothness of the flow map for low-regularity solutions of the Camassa-Holm equations

Abstract Related Papers Cited by
  • It was recently proven by De Lellis, Kappeler, and Topalov in [19] that the periodic Cauchy problem for the Camassa-Holm equations is locally well-posed in the space $Lip (\mathbb{T})$ endowed with the topology of $H^1 (\mathbb{T})$. We prove here that the Lagrangian flow of these solutions are analytic with respect to time and smooth with respect to the initial data.
        These results can be adapted to the higher-order Camassa-Holm equations describing the exponential curves of the manifold of orientation preserving diffeomorphisms of $\mathbb{T}$ using the Riemannian structure induced by the Sobolev inner product $H^l (\mathbb{T})$, for $l ∈ \mathbb{N}$, $l\geq 2$ (the classical Camassa-Holm equation corresponds to the case $l=1$): the periodic Cauchy problem is locally well-posed in the space $ W^{2l-1,\infty} (\mathbb{T})$ endowed with the topology of $H^{2l-1} (\mathbb{T})$ and the Lagrangian flows of these solutions are analytic with respect to time with values in $ W^{2l-1,\infty} (\mathbb{T})$ and smooth with respect to the initial data.
        These results extend some earlier results which dealt with more regular solutions. In particular our results cover the case of peakons, up to the first collision.
    Mathematics Subject Classification: Primary: 35B65, 35B30, 35Q35, 35Q51.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.

    [2]

    L. BrandoleseBreakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not., to appear. doi: 10.1093/imrn/rnr218.

    [3]

    A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27.doi: 10.1142/S0219530507000857.

    [4]

    A. Bressan and M. Fonte, An optimal transportation metric for solutions of the Camassa-Holm equation, Methods Appl. Anal., 12 (2005), 191-219.

    [5]

    R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [6]

    J.-Y. Chemin, Fluides parfaits incompressibles, Astérisque, 230 (1995).

    [7]

    G. M. Coclite, H. Holden and K. H. Karlsen, Well-posedness of higher-order Camassa-Holm equations, Journal of Differential Equations, 246 (2009), 929-963.doi: 10.1016/j.jde.2008.04.014.

    [8]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [9]

    A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.

    [10]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [11]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2), 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [12]

    A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.doi: 10.1007/s00014-003-0785-6.

    [13]

    A. Constantin and B. Kolev, $H^k$ metrics on the diffeomorphism group of the circle, J. Nonlinear Math. Phys., 10 (2003), 424-430.doi: 10.2991/jnmp.2003.10.4.1.

    [14]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [15]

    A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.

    [16]

    H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.doi: 10.1007/BF01170373.

    [17]

    R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.

    [18]

    R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.doi: 10.1016/S0022-0396(03)00096-2.

    [19]

    C. de Lellis, T. Kappeler and P. Topalov, Low-regularity solutions of the periodic Camassa-Holm equation, Comm. Partial Differential Equations, 32 (2007), 87-126.doi: 10.1080/03605300601091470.

    [20]

    D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163.

    [21]

    K. El Dika and L. Molinet, Exponential decay of $H^1$-localized solutions and stability of the train of $N$ solitary waves for the Camassa-Holm equation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2313-2331.doi: 10.1098/rsta.2007.2011.

    [22]

    K. El Dika and L. Molinet, Stability of multipeakons, Ann. Inst. H. Poincaré Anal. Non Linaire, 26 (2009), 1517-1532.doi: 10.1016/j.anihpc.2009.02.002.

    [23]

    B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981), 47-66.doi: 10.1016/0167-2789(81)90004-X.

    [24]

    O. Glass, Controllability and asymptotic stabilization of the Camassa-Holm equation, J. Differential Equations, 245 (2008), 1584-1615.doi: 10.1016/j.jde.2008.06.016.

    [25]

    O. Glass, F. Sueur and T. Takahashi, Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, Annales Scientifiques de l'Ecole Normale Supérieure, 45 (2012), 1-51.

    [26]

    H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.doi: 10.1080/03605300601088674.

    [27]

    H. Holden and X. Raynaud, Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 945-988.

    [28]

    T. Kappeler, E. Loubet and P. Topalov, Analyticity of Riemannian exponential maps on Diff(T), J. Lie Theory, 17 (2007), 481-503.

    [29]

    T. Kato, On the smoothness of trajectories in incompressible perfect fluids, in "Nonlinear Wave Equations (Providence, RI, 1998)" 263 of {Contemp. Math.}, 109-130. Amer. Math. Soc., Providence, RI, (2000).doi: 10.1090/conm/263/04194.

    [30]

    J. Lenells, Stability of periodic peakons, Int. Math. Res. Not., (2004), 485-499.doi: 10.1155/S1073792804132431.

    [31]

    J. Lenells, Riemannian geometry on the diffeomorphism group of the circle, Ark. Mat., 45 (2007), 297-325.doi: 10.1007/s11512-007-0047-8.

    [32]

    Yi A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.doi: 10.1006/jdeq.1999.3683.

    [33]

    R. McLachlan and X. Zhang, Well-posedness of modified Camassa-Holm equations, J. Differential Equations, 246 (2009), 3241-3259.doi: 10.1016/j.jde.2009.01.039.

    [34]

    G. Misiołek, Classical solutions of the periodic Camassa-Holm equation, Geom. Funct. Anal., 12 (2002), 1080-1104.doi: 10.1007/PL00012648.

    [35]

    C. Mu, S. Zhou and R. Zeng, Well-posedness and blow-up phenomena for a higher order shallow water equation, J. Differential Equations, 251 (2011), 3488-3499.doi: 10.1016/j.jde.2011.08.020.

    [36]

    V. Perrollaz, Initial boundary value problem and asymptotic stabilization of the Camassa-Holm equation on an interval, J. Funct. Anal., 259 (2010), 2333-2365.doi: 10.1016/j.jfa.2010.06.007.

    [37]

    G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. Ser. A: Theory Methods, 46 (2001), 309-327.doi: 10.1016/S0362-546X(01)00791-X.

    [38]

    P. Serfati, Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl., 74 (1995), 95-104.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return