\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lipschitz metric for the Camassa--Holm equation on the line

Abstract / Introduction Related Papers Cited by
  • We study stability of solutions of the Cauchy problem on the line for the Camassa--Holm equation $u_t-u_{xxt}+3uu_x-2u_xu_{xx}-uu_{xxx}=0$ with initial data $u_0$. In particular, we derive a new Lipschitz metric $d_D$ with the property that for two solutions $u$ and $v$ of the equation we have $d_D(u(t),v(t))\le e^{Ct} d_D(u_0,v_0)$. The relationship between this metric and the usual norms in $H^1$ and $L^\infty$ is clarified. The method extends to the generalized hyperelastic-rod equation $u_t-u_{xxt}+f(u)_x-f(u)_{xxx}+(g(u)+\frac12 f''(u)(u_x)^2)_x=0$ (for $f$ without inflection points).
    Mathematics Subject Classification: Primary: 35Q53, 35B35; Secondary: 35Q20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z.

    [2]

    A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter-Saxton equation, J. Math. Pures Appl., 94 (2010), 68-92.doi: 10.1016/j.matpur.2010.02.005.

    [3]

    R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solutions, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [4]

    R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33.

    [5]

    A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.

    [6]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [7]

    A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.doi: 10.1007/PL00004793.

    [8]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rat. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [9]

    H.-H. Dai, Exact traveling-wave solutions of an integrable equation arising in hyperelastic rods, Wave Motion, 28 (1998), 367-381.doi: 10.1016/S0165-2125(98)00014-6.

    [10]

    H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.doi: 10.1007/BF01170373.

    [11]

    H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456 (2000), 331-363.doi: 10.1098/rspa.2000.0520.

    [12]

    K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation, J. Differential Equations, 250 (2011), 1460-1492.doi: 10.1016/j.jde.2010.07.006.

    [13]

    H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.doi: 10.1080/03605300601088674.

    [14]

    H. Holden and X. Raynaud, Global conservative multipeakon solutions of the Camassa-Holm equation, J. Hyperbolic Differ. Equ., 4 (2007), 39-64.doi: 10.1142/S0219891607001045.

    [15]

    H. Holden and X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, 233 (2007), 448-484.doi: 10.1016/j.jde.2006.09.007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(184) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return