• Previous Article
    Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation
  • DCDS Home
  • This Issue
  • Next Article
    On the periodic solutions of a class of Duffing differential equations
January  2013, 33(1): 283-303. doi: 10.3934/dcds.2013.33.283

Generalized linear differential equations in a Banach space: Continuous dependence on a parameter

1. 

Instituto de Ciências Matemáticas e Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos, SP, Brazil

2. 

Institute of Mathematics, Academy of Sciences of Czech Republic, Žitná 25, CZ 115 67 Praha 1, Czech Republic

Received  July 2011 Revised  November 2011 Published  September 2012

This paper deals with integral equations of the form \begin{eqnarray*} x(t)=\tilde{x}+∫_a^td[A]x+f(t)-f(a), t∈[a,b], \end{eqnarray*} in a Banach space $X,$ where $-\infty\ < a < b < \infty$, $\tilde{x}∈ X,$ $f:[a,b]→X$ is regulated on [a,b] and $A(t)$ is for each $t∈[a,b], $ a linear bounded operator on $X,$ while the mapping $A:[a,b]→L(X)$ has a bounded variation on [a,b] Such equations are called generalized linear differential equations. Our aim is to present new results on the continuous dependence of solutions of such equations on a parameter. Furthermore, an application of these results to dynamic equations on time scales is given.
Citation: Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283
References:
[1]

S. Afonso, E. M. Bonotto, M. Federson and Š. Schwabik, Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invarianceprinciple for non-autonomous systems with impulses,, J. Differential Equations, 250 (2011), 2969.  doi: 10.1016/j.jde.2011.01.019.  Google Scholar

[2]

Z. Artstein, Continuous dependence on parameters: On the best possible results,, J. Differential Equations, 19 (1975), 214.  doi: 10.1016/0022-0396(75)90002-9.  Google Scholar

[3]

M. Ashordia, On the correctness of linear boundary value problems for systems of generalized ordinarydifferential equations,, Proc. Georgian Acad. Sci. Math., 1 (1993), 385.   Google Scholar

[4]

M. Bohner and A. Peterson, "Dynamic Equations on Time Scales: An Introduction with Applications,", Birkhäuser, (2001).   Google Scholar

[5]

M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales,", Birkhäuser, (2003).   Google Scholar

[6]

M. Brokate and P. Krejčí,, Duality in the space of regulated functions and the play operator,, Math. Z., 245 (2003), 667.  doi: 10.1007/s00209-003-0563-6.  Google Scholar

[7]

M. Federson and Š. Schwabik, Generalized ordinary differential equations approach to impulsive retarded functionaldifferential equations,, Differential and Integral Equations, 19 (2006), 1201.   Google Scholar

[8]

D. Fraňková, Continuous dependence on a parameter of solutions of generalized differential equations,, časopis pěst. mat., 114 (1989), 230.   Google Scholar

[9]

Z. Halas, Continuous dependence of solutions of generalized linear ordinary differential equationson a parameter,, Mathematica Bohemica, 132 (2007), 205.   Google Scholar

[10]

Z. Halas, G. Monteiro and M. Tvrdý, Emphatic convergence and sequential solutions of generalized linear differentialequations,, Mem.Differential Equations Math. Phys., 54 (2011), 27.   Google Scholar

[11]

Z. Halas and M. Tvrdý, Continuous dependence of solutions of generalized linear differential equations on aparameter,, Funct. Differ. Equ., 16 (2009), 299.   Google Scholar

[12]

T. H. Hildebrandt, On systems of linear differentio-Stieltjes integral equations,, Illinois J. Math., 3 (1959), 352.   Google Scholar

[13]

Ch. S. Hönig, "Volterra Stieltjes-integral Equations,", North Holland and American Elsevier, (1975).   Google Scholar

[14]

C. Imaz and Z. Vorel, Generalized ordinary differential equations in Banach spaces and applicationsto functional equations,, Bol. Soc. Mat. Mexicana, 11 (1966), 47.   Google Scholar

[15]

I. Kiguradze, Boundary value problems for systems of ordinary differential equations,, (in Russian), 30 (1987), 3.   Google Scholar

[16]

M. A. Krasnoselskij and S. G. Krein, On the averaging principle in nonlinear mechanics,, (in Russian), 10 (1955), 147.   Google Scholar

[17]

P. Krejčí and P. Laurençot, Generalized variational inequalities,, J. Convex Anal., 9 (2002), 159.   Google Scholar

[18]

J. Kurzweil and Z. Vorel, Continuous dependence of solutions of differential equations on a parameter,, Czechoslovak Math. J., 7 (1957), 568.   Google Scholar

[19]

J. Kurzweil, Generalized ordinary differential equation and continuous dependence on a parameter,, Czechoslovak Math. J., 7 (1957), 418.   Google Scholar

[20]

J. Kurzweil, Generalized ordinary differential equations,, Czechoslovak Math. J., 8 (1958), 360.   Google Scholar

[21]

G. Meng and M. Zhang, Continuity in weak topology: First order linear system of ODE,, Acta Math. Sinica, 26 (2010), 1287.  doi: 10.1007/s10114-010-8103-x.  Google Scholar

[22]

G. Meng and M. Zhang, Measure differential equations I. Continuity of solutions in measures with weak topology,, Tsinghua University, (2009).   Google Scholar

[23]

G. Meng and M. Zhang, Measure differential equations II. Continuity of eigenvalues in measures with weak topology,, Tsinghua University, (2009).   Google Scholar

[24]

G. A. Monteiro and M. Tvrdý, On Kurzweil-Stieltjes integral in Banach space,, Math. Bohem., 137 (2013), 365.   Google Scholar

[25]

F. Oliva and Z. Vorel, Functional equations and generalized ordinary differential equations,, Bol. Soc. Mat. Mexicana, 11 (1966), 40.   Google Scholar

[26]

Z. Opial, Continuous parameter dependence in linear systems of differential equations,, J. Differential Equations, 3 (1967), 571.  doi: 10.1016/0022-0396(67)90017-4.  Google Scholar

[27]

Š. Schwabik, "Generalized Ordinary Differential Equations,", World Scientific. Singapore, (1992).   Google Scholar

[28]

Š. Schwabik, Abstract Perron-Stieltjes integral,, Math. Bohem., 121 (1996), 425.   Google Scholar

[29]

Š. Schwabik, Linear Stieltjes integral equations in Banach spaces,, Math. Bohem., 124 (1999), 433.   Google Scholar

[30]

Š. Schwabik, Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions,, Math. Bohem., 125 (2000), 431.   Google Scholar

[31]

Š. Schwabik, M. Tvrdý and O. Vejvoda, "Differential and Integral Equations: Boundary Value Problems and Adjoint,", Academia and Reidel. Praha and Dordrecht, (1979).   Google Scholar

[32]

A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations,, J. Math. Anal. Appl., 385 (2012), 534.  doi: 10.1016/j.jmaa.2011.06.068.  Google Scholar

[33]

A. Taylor, "Introduction to Functional Analysis,", Wiley, (1958).   Google Scholar

[34]

M. Tvrdý, On the continuous dependence on a parameter of solutions of initial value problems for linear generalized differential equations,, Funct. Differ. Equ., 5 (1999), 483.   Google Scholar

[35]

M. Tvrdý, Differential and integral equations in the space of regulated functions,, Mem. Differential Equations Math. Phys., 25 (2002), 1.   Google Scholar

show all references

References:
[1]

S. Afonso, E. M. Bonotto, M. Federson and Š. Schwabik, Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invarianceprinciple for non-autonomous systems with impulses,, J. Differential Equations, 250 (2011), 2969.  doi: 10.1016/j.jde.2011.01.019.  Google Scholar

[2]

Z. Artstein, Continuous dependence on parameters: On the best possible results,, J. Differential Equations, 19 (1975), 214.  doi: 10.1016/0022-0396(75)90002-9.  Google Scholar

[3]

M. Ashordia, On the correctness of linear boundary value problems for systems of generalized ordinarydifferential equations,, Proc. Georgian Acad. Sci. Math., 1 (1993), 385.   Google Scholar

[4]

M. Bohner and A. Peterson, "Dynamic Equations on Time Scales: An Introduction with Applications,", Birkhäuser, (2001).   Google Scholar

[5]

M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales,", Birkhäuser, (2003).   Google Scholar

[6]

M. Brokate and P. Krejčí,, Duality in the space of regulated functions and the play operator,, Math. Z., 245 (2003), 667.  doi: 10.1007/s00209-003-0563-6.  Google Scholar

[7]

M. Federson and Š. Schwabik, Generalized ordinary differential equations approach to impulsive retarded functionaldifferential equations,, Differential and Integral Equations, 19 (2006), 1201.   Google Scholar

[8]

D. Fraňková, Continuous dependence on a parameter of solutions of generalized differential equations,, časopis pěst. mat., 114 (1989), 230.   Google Scholar

[9]

Z. Halas, Continuous dependence of solutions of generalized linear ordinary differential equationson a parameter,, Mathematica Bohemica, 132 (2007), 205.   Google Scholar

[10]

Z. Halas, G. Monteiro and M. Tvrdý, Emphatic convergence and sequential solutions of generalized linear differentialequations,, Mem.Differential Equations Math. Phys., 54 (2011), 27.   Google Scholar

[11]

Z. Halas and M. Tvrdý, Continuous dependence of solutions of generalized linear differential equations on aparameter,, Funct. Differ. Equ., 16 (2009), 299.   Google Scholar

[12]

T. H. Hildebrandt, On systems of linear differentio-Stieltjes integral equations,, Illinois J. Math., 3 (1959), 352.   Google Scholar

[13]

Ch. S. Hönig, "Volterra Stieltjes-integral Equations,", North Holland and American Elsevier, (1975).   Google Scholar

[14]

C. Imaz and Z. Vorel, Generalized ordinary differential equations in Banach spaces and applicationsto functional equations,, Bol. Soc. Mat. Mexicana, 11 (1966), 47.   Google Scholar

[15]

I. Kiguradze, Boundary value problems for systems of ordinary differential equations,, (in Russian), 30 (1987), 3.   Google Scholar

[16]

M. A. Krasnoselskij and S. G. Krein, On the averaging principle in nonlinear mechanics,, (in Russian), 10 (1955), 147.   Google Scholar

[17]

P. Krejčí and P. Laurençot, Generalized variational inequalities,, J. Convex Anal., 9 (2002), 159.   Google Scholar

[18]

J. Kurzweil and Z. Vorel, Continuous dependence of solutions of differential equations on a parameter,, Czechoslovak Math. J., 7 (1957), 568.   Google Scholar

[19]

J. Kurzweil, Generalized ordinary differential equation and continuous dependence on a parameter,, Czechoslovak Math. J., 7 (1957), 418.   Google Scholar

[20]

J. Kurzweil, Generalized ordinary differential equations,, Czechoslovak Math. J., 8 (1958), 360.   Google Scholar

[21]

G. Meng and M. Zhang, Continuity in weak topology: First order linear system of ODE,, Acta Math. Sinica, 26 (2010), 1287.  doi: 10.1007/s10114-010-8103-x.  Google Scholar

[22]

G. Meng and M. Zhang, Measure differential equations I. Continuity of solutions in measures with weak topology,, Tsinghua University, (2009).   Google Scholar

[23]

G. Meng and M. Zhang, Measure differential equations II. Continuity of eigenvalues in measures with weak topology,, Tsinghua University, (2009).   Google Scholar

[24]

G. A. Monteiro and M. Tvrdý, On Kurzweil-Stieltjes integral in Banach space,, Math. Bohem., 137 (2013), 365.   Google Scholar

[25]

F. Oliva and Z. Vorel, Functional equations and generalized ordinary differential equations,, Bol. Soc. Mat. Mexicana, 11 (1966), 40.   Google Scholar

[26]

Z. Opial, Continuous parameter dependence in linear systems of differential equations,, J. Differential Equations, 3 (1967), 571.  doi: 10.1016/0022-0396(67)90017-4.  Google Scholar

[27]

Š. Schwabik, "Generalized Ordinary Differential Equations,", World Scientific. Singapore, (1992).   Google Scholar

[28]

Š. Schwabik, Abstract Perron-Stieltjes integral,, Math. Bohem., 121 (1996), 425.   Google Scholar

[29]

Š. Schwabik, Linear Stieltjes integral equations in Banach spaces,, Math. Bohem., 124 (1999), 433.   Google Scholar

[30]

Š. Schwabik, Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions,, Math. Bohem., 125 (2000), 431.   Google Scholar

[31]

Š. Schwabik, M. Tvrdý and O. Vejvoda, "Differential and Integral Equations: Boundary Value Problems and Adjoint,", Academia and Reidel. Praha and Dordrecht, (1979).   Google Scholar

[32]

A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations,, J. Math. Anal. Appl., 385 (2012), 534.  doi: 10.1016/j.jmaa.2011.06.068.  Google Scholar

[33]

A. Taylor, "Introduction to Functional Analysis,", Wiley, (1958).   Google Scholar

[34]

M. Tvrdý, On the continuous dependence on a parameter of solutions of initial value problems for linear generalized differential equations,, Funct. Differ. Equ., 5 (1999), 483.   Google Scholar

[35]

M. Tvrdý, Differential and integral equations in the space of regulated functions,, Mem. Differential Equations Math. Phys., 25 (2002), 1.   Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[6]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[17]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[18]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]