\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized linear differential equations in a Banach space: Continuous dependence on a parameter

Abstract Related Papers Cited by
  • This paper deals with integral equations of the form \begin{eqnarray*} x(t)=\tilde{x}+∫_a^td[A]x+f(t)-f(a), t∈[a,b], \end{eqnarray*} in a Banach space $X,$ where $-\infty\ < a < b < \infty$, $\tilde{x}∈ X,$ $f:[a,b]→X$ is regulated on [a,b] and $A(t)$ is for each $t∈[a,b], $ a linear bounded operator on $X,$ while the mapping $A:[a,b]→L(X)$ has a bounded variation on [a,b] Such equations are called generalized linear differential equations. Our aim is to present new results on the continuous dependence of solutions of such equations on a parameter. Furthermore, an application of these results to dynamic equations on time scales is given.
    Mathematics Subject Classification: Primary: 45A05, 34A30; Secondary: 34N05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Afonso, E. M. Bonotto, M. Federson and Š. Schwabik, Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invarianceprinciple for non-autonomous systems with impulses, J. Differential Equations, 250 (2011), 2969-3001.doi: 10.1016/j.jde.2011.01.019.

    [2]

    Z. Artstein, Continuous dependence on parameters: On the best possible results, J. Differential Equations, 19 (1975), 214-225.doi: 10.1016/0022-0396(75)90002-9.

    [3]

    M. Ashordia, On the correctness of linear boundary value problems for systems of generalized ordinarydifferential equations, Proc. Georgian Acad. Sci. Math., 1 (1993), 385-394.

    [4]

    M. Bohner and A. Peterson, "Dynamic Equations on Time Scales: An Introduction with Applications," Birkhäuser, Boston, 2001.

    [5]

    M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales," Birkhäuser, Boston, 2003.

    [6]

    M. Brokate and P. Krejčí,, Duality in the space of regulated functions and the play operator, Math. Z., 245 (2003), 667-688.doi: 10.1007/s00209-003-0563-6.

    [7]

    M. Federson and Š. Schwabik, Generalized ordinary differential equations approach to impulsive retarded functionaldifferential equations, Differential and Integral Equations, 19 (2006), 1201-1234.

    [8]

    D. Fraňková, Continuous dependence on a parameter of solutions of generalized differential equations, časopis pěst. mat., 114 (1989), 230-261.

    [9]

    Z. Halas, Continuous dependence of solutions of generalized linear ordinary differential equationson a parameter, Mathematica Bohemica, 132 (2007), 205-218.

    [10]

    Z. Halas, G. Monteiro and M. Tvrdý, Emphatic convergence and sequential solutions of generalized linear differentialequations, Mem.Differential Equations Math. Phys., 54 (2011), 27-49.

    [11]

    Z. Halas and M. Tvrdý, Continuous dependence of solutions of generalized linear differential equations on aparameter, Funct. Differ. Equ., 16 (2009), 299-313.

    [12]

    T. H. Hildebrandt, On systems of linear differentio-Stieltjes integral equations, Illinois J. Math., 3 (1959), 352-373.

    [13]

    Ch. S. Hönig, "Volterra Stieltjes-integral Equations," North Holland and American Elsevier, Mathematics Studies 16. Amsterdam and New York, 1975.

    [14]

    C. Imaz and Z. Vorel, Generalized ordinary differential equations in Banach spaces and applicationsto functional equations, Bol. Soc. Mat. Mexicana, 11 (1966), 47-59.

    [15]

    I. Kiguradze, Boundary value problems for systems of ordinary differential equations, (in Russian), Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh, 30 (1987), 3-103; English transl.: J. Sov. Math., 43 (1988), 2259-2339.

    [16]

    M. A. Krasnoselskij and S. G. Krein, On the averaging principle in nonlinear mechanics, (in Russian), Uspekhi mat. nauk, 10 (1955), 147-152.

    [17]

    P. Krejčí and P. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.

    [18]

    J. Kurzweil and Z. Vorel, Continuous dependence of solutions of differential equations on a parameter, Czechoslovak Math. J., 7 (1957), 568-583.

    [19]

    J. Kurzweil, Generalized ordinary differential equation and continuous dependence on a parameter, Czechoslovak Math. J., 7 (1957), 418-449.

    [20]

    J. Kurzweil, Generalized ordinary differential equations, Czechoslovak Math. J., 8 (1958), 360-388.

    [21]

    G. Meng and M. Zhang, Continuity in weak topology: First order linear system of ODE, Acta Math. Sinica, 26 (2010), 1287-1298.doi: 10.1007/s10114-010-8103-x.

    [22]

    G. Meng and M. Zhang, Measure differential equations I. Continuity of solutions in measures with weak topology, Tsinghua University, preprint (2009). Available from http://faculty.math.tsinghua.edu.cn/~mzhang/publs/mde1.pdf.

    [23]

    G. Meng and M. Zhang, Measure differential equations II. Continuity of eigenvalues in measures with weak topology, Tsinghua University, preprint (2009). Available from http://faculty.math.tsinghua.edu.cn/~mzhang/publs/mde2.pdf.

    [24]

    G. A. Monteiro and M. Tvrdý, On Kurzweil-Stieltjes integral in Banach space, Math. Bohem., 137 (2013), 365-381.

    [25]

    F. Oliva and Z. Vorel, Functional equations and generalized ordinary differential equations, Bol. Soc. Mat. Mexicana, 11 (1966), 40-46.

    [26]

    Z. Opial, Continuous parameter dependence in linear systems of differential equations, J. Differential Equations, 3 (1967), 571-579.doi: 10.1016/0022-0396(67)90017-4.

    [27]

    Š. Schwabik, "Generalized Ordinary Differential Equations," World Scientific. Singapore, 1992.

    [28]

    Š. Schwabik, Abstract Perron-Stieltjes integral, Math. Bohem., 121 (1996), 425-447.

    [29]

    Š. Schwabik, Linear Stieltjes integral equations in Banach spaces, Math. Bohem., 124 (1999), 433-457.

    [30]

    Š. Schwabik, Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions, Math. Bohem., 125 (2000), 431-454.

    [31]

    Š. Schwabik, M. Tvrdý and O. Vejvoda, "Differential and Integral Equations: Boundary Value Problems and Adjoint," Academia and Reidel. Praha and Dordrecht, 1979.

    [32]

    A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations, J. Math. Anal. Appl., 385 (2012), 534-550.doi: 10.1016/j.jmaa.2011.06.068.

    [33]

    A. Taylor, "Introduction to Functional Analysis," Wiley, 1958.

    [34]

    M. Tvrdý, On the continuous dependence on a parameter of solutions of initial value problems for linear generalized differential equations, Funct. Differ. Equ., 5 (1999), 483-498.

    [35]

    M. Tvrdý, Differential and integral equations in the space of regulated functions, Mem. Differential Equations Math. Phys., 25 (2002), 1-104.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(145) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return