• Previous Article
    Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom
  • DCDS Home
  • This Issue
  • Next Article
    Global-in-time behavior of the solution to a Gierer-Meinhardt system
July  2013, 33(7): 2861-2883. doi: 10.3934/dcds.2013.33.2861

Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$

1. 

Department of Mathematics, Fudan University, Shanghai, 200433, China

2. 

Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275

Received  March 2012 Revised  June 2012 Published  January 2013

In this paper, we study the bifurcation of isolated closed orbits from degenerated singularity of $3$-dimensional polynomial system $dx/dt = Q(x)$. For some types of $Q(x)$, we get the lower bound for the number of these isolated closed orbits. In particular cases, an explicit (sometimes sharp) upper bound is obtained. Using these results, we investigate degenerated Hopf bifurcation and give a sufficient condition for the existence of isolated closed orbits. Also we show that the $3$ species model of degree $3$ admits $2$ isolated closed orbits bifurcating from origin.
Citation: Jianfeng Huang, Yulin Zhao. Bifurcation of isolated closed orbits from degenerated singularity in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2861-2883. doi: 10.3934/dcds.2013.33.2861
References:
[1]

M. Bobienski and H. Zoladek, Limit cycles of three-dimensional polynomial vector fields,, Nonlinearity, 18 (2005), 175. doi: 10.1088/0951-7715/18/1/010. Google Scholar

[2]

M. I. T. Camacho, Geometric properties of homogeneous vector fields of degree two in $R^3$,, Transactions of the American Mathematical Society, 268 (1981), 79. doi: 10.2307/1998338. Google Scholar

[3]

R. E. Gomory, Trajectories tending to a critical point in 3-space,, Annals of Mathematics, 61 (1955), 140. Google Scholar

[4]

J. Huang and Y. Zhao, The limit set of trajectory in quasi-homogeneous system on $\mathbbR^3$,, Applicable Analysis., (). doi: 10.1080/00036811.2011.567193. Google Scholar

[5]

J. Huang and Y. Zhao, The projective vector field of a kind of three-dimensional quasi-homogeneous system on $\mathbbS^2$,, Nonlin. Anal., 74 (2011), 4088. doi: 10.1016/j.na.2011.03.043. Google Scholar

[6]

J. Huang and Y. Zhao, Extended quasi-homogeneous polynomial system in $\mathbbR^3$,, submitted., (). Google Scholar

[7]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species,, Nonlinearity, 1 (1988), 51. Google Scholar

[8]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, SIAM J. Appl. Math., 29 (1975), 243. Google Scholar

[9]

J. Llibre, C. A. Buzzi and P. R. da Silva, 3-dimensional Hopf bifurcation via averaging theory,, Discrete Contin. Dyn. Syst., 17 (2007), 529. Google Scholar

[10]

J. Llibre, J. S. Perez Del Rio and J. A. Rodriguez, Structural stability of planar homogeneous polynomial vector fields: applications to critical points and to infinity,, Journal of Differential Equations, 125 (1996), 490. doi: 10.1006/jdeq.1996.0038. Google Scholar

[11]

J. Llibre and C. Pessoa, Invariant circles for homogeneous polynomial vector fields on the 2-dimensional sphere,, Rend. Circ. Mat. Palermo, 55 (2006), 63. doi: 10.1007/BF02874668. Google Scholar

[12]

J. Llibre and C. Pessoa, homogeneous polynomial vector fields of degree $2$ on the $2$-dimensional sphere,, Extracta Math., 21 (2006), 167. Google Scholar

[13]

J. Llibre and H. Wu, Hopf bifurcation for degenerate singular points of multiplicity $2n-1$ in dimension $3$,, Bull. Sci. Math., 132 (2008), 218. doi: 10.1016/j.bulsci.2007.01.003. Google Scholar

[14]

J. Llibre and J. Yu, Limit cycles for a class of three-dimensional polynomial differential systems,, Journal of Dynamical and Control Systems, 13 (2007), 531. doi: 10.1007/s10883-007-9025-5. Google Scholar

[15]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269. doi: 10.1088/0951-7715/15/4/313. Google Scholar

[16]

J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method,, Pacific J. Math., 240 (2009), 321. doi: 10.2140/pjm.2009.240.321. Google Scholar

[17]

L. Markus, Quadratic differential equations and non-associative algebras,, in, (1960), 185. Google Scholar

[18]

Y. Ye et al., "Theory of Limit Cycles,", Transl. Math. Monogr. American Mathematical Society, (1986). Google Scholar

show all references

References:
[1]

M. Bobienski and H. Zoladek, Limit cycles of three-dimensional polynomial vector fields,, Nonlinearity, 18 (2005), 175. doi: 10.1088/0951-7715/18/1/010. Google Scholar

[2]

M. I. T. Camacho, Geometric properties of homogeneous vector fields of degree two in $R^3$,, Transactions of the American Mathematical Society, 268 (1981), 79. doi: 10.2307/1998338. Google Scholar

[3]

R. E. Gomory, Trajectories tending to a critical point in 3-space,, Annals of Mathematics, 61 (1955), 140. Google Scholar

[4]

J. Huang and Y. Zhao, The limit set of trajectory in quasi-homogeneous system on $\mathbbR^3$,, Applicable Analysis., (). doi: 10.1080/00036811.2011.567193. Google Scholar

[5]

J. Huang and Y. Zhao, The projective vector field of a kind of three-dimensional quasi-homogeneous system on $\mathbbS^2$,, Nonlin. Anal., 74 (2011), 4088. doi: 10.1016/j.na.2011.03.043. Google Scholar

[6]

J. Huang and Y. Zhao, Extended quasi-homogeneous polynomial system in $\mathbbR^3$,, submitted., (). Google Scholar

[7]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Competing species,, Nonlinearity, 1 (1988), 51. Google Scholar

[8]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, SIAM J. Appl. Math., 29 (1975), 243. Google Scholar

[9]

J. Llibre, C. A. Buzzi and P. R. da Silva, 3-dimensional Hopf bifurcation via averaging theory,, Discrete Contin. Dyn. Syst., 17 (2007), 529. Google Scholar

[10]

J. Llibre, J. S. Perez Del Rio and J. A. Rodriguez, Structural stability of planar homogeneous polynomial vector fields: applications to critical points and to infinity,, Journal of Differential Equations, 125 (1996), 490. doi: 10.1006/jdeq.1996.0038. Google Scholar

[11]

J. Llibre and C. Pessoa, Invariant circles for homogeneous polynomial vector fields on the 2-dimensional sphere,, Rend. Circ. Mat. Palermo, 55 (2006), 63. doi: 10.1007/BF02874668. Google Scholar

[12]

J. Llibre and C. Pessoa, homogeneous polynomial vector fields of degree $2$ on the $2$-dimensional sphere,, Extracta Math., 21 (2006), 167. Google Scholar

[13]

J. Llibre and H. Wu, Hopf bifurcation for degenerate singular points of multiplicity $2n-1$ in dimension $3$,, Bull. Sci. Math., 132 (2008), 218. doi: 10.1016/j.bulsci.2007.01.003. Google Scholar

[14]

J. Llibre and J. Yu, Limit cycles for a class of three-dimensional polynomial differential systems,, Journal of Dynamical and Control Systems, 13 (2007), 531. doi: 10.1007/s10883-007-9025-5. Google Scholar

[15]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269. doi: 10.1088/0951-7715/15/4/313. Google Scholar

[16]

J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method,, Pacific J. Math., 240 (2009), 321. doi: 10.2140/pjm.2009.240.321. Google Scholar

[17]

L. Markus, Quadratic differential equations and non-associative algebras,, in, (1960), 185. Google Scholar

[18]

Y. Ye et al., "Theory of Limit Cycles,", Transl. Math. Monogr. American Mathematical Society, (1986). Google Scholar

[1]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[2]

Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027

[3]

Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225

[4]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[5]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[6]

Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015

[7]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[8]

Xiao-Song Yang. Index sums of isolated singular points of positive vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1033-1039. doi: 10.3934/dcds.2009.25.1033

[9]

Biao Ou. Examinations on a three-dimensional differentiable vector field that equals its own curl. Communications on Pure & Applied Analysis, 2003, 2 (2) : 251-257. doi: 10.3934/cpaa.2003.2.251

[10]

Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

[11]

Jaume Llibre, Marco Antonio Teixeira. Regularization of discontinuous vector fields in dimension three. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 235-241. doi: 10.3934/dcds.1997.3.235

[12]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[13]

Leo Howden, Donald Giddings, Henry Power, Michael Vloeberghs. Three-dimensional cerebrospinal fluid flow within the human central nervous system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 957-969. doi: 10.3934/dcdsb.2011.15.957

[14]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[15]

Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025

[16]

Dan Li, Chunlai Mu, Pan Zheng, Ke Lin. Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 831-849. doi: 10.3934/dcdsb.2018209

[17]

Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239

[18]

Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839

[19]

Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation values for a family of planar vector fields of degree five. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 669-701. doi: 10.3934/dcds.2015.35.669

[20]

C. Alonso-González, M. I. Camacho, F. Cano. Topological invariants for singularities of real vector fields in dimension three. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 823-847. doi: 10.3934/dcds.2008.20.823

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]