July  2013, 33(7): 2885-2900. doi: 10.3934/dcds.2013.33.2885

Global-in-time behavior of the solution to a Gierer-Meinhardt system

1. 

Department of Applied Mathematics, University Crete, P.O. Box 2208, 71409, Heraklion, Crete

2. 

Division of Mathematical Science, Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikane-yama, Toyonaka, Osaka, 560-8531

3. 

Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku 169-8555, Tokyo

Received  April 2012 Revised  September 2012 Published  January 2013

Gierer-Meinhardt system is a mathematical model to describe biological pattern formation due to activator and inhibitor. Turing pattern is expected in the presence of local self-enhancement and long-range inhibition. The long-time behavior of the solution, however, has not yet been clarified mathematically. In this paper, we study the case when its ODE part takes periodic-in-time solutions, that is, $\tau=\frac{s+1}{p-1}$. Under some additional assumptions on parameters, we show that the solution exists global-in-time and absorbed into one of these ODE orbits. Thus spatial patterns eventually disappear if those parameters are in a region without local self-enhancement or long-range inhibition.
Citation: Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885
References:
[1]

N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations,, J. Differential Equations, 33 (1979), 201.  doi: 10.1016/0022-0396(79)90088-3.  Google Scholar

[2]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30.   Google Scholar

[3]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[4]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Math., 840 (1981).   Google Scholar

[5]

H. Hoshino and Y. Yamada, Sovability and smoothing effect for semilinear parabolic equations,, Funkcialaj Ekvacioj, 34 (1991), 475.   Google Scholar

[6]

D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model,, Physica D, 150 (2001), 25.  doi: 10.1016/S0167-2789(00)00206-2.  Google Scholar

[7]

H. Jiang, Global existence of solutions of an activator-inhibitor system,, Discrete and Continuous Dynamical Systems, 14 (2006), 737.  doi: 10.3934/dcds.2006.14.737.  Google Scholar

[8]

H. Jiang and W.-M. Ni, A priori estimates of stationary solutions of an activator-inhibitor system,, Indiana Univ. Math. J., 56 (2007), 681.  doi: 10.1512/iumj.2007.56.2982.  Google Scholar

[9]

A. J. Koch and H. Meinhardt, Biological pattern formation: From basic mechanism to complex structure,, Rev. Modern Physiscs, 66 (1994), 1481.   Google Scholar

[10]

E. Latos, T. Suzuki and Y. Yamada, Transient and asymptotic dynamics of a prey-predator system with diffusion,, to appear in; Math. Meth. Appl. Sci., ().  doi: 10.1002/mma.2524.  Google Scholar

[11]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems,, J. Differential Equations, 247 (2009), 1762.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[12]

K. Masuda and T. Takahashi, Reaction-diffusion systems in Gierer-Meinhardt theory in biological pattern formation,, Japan J. Appl. Math., 4 (1987), 47.  doi: 10.1007/BF03167754.  Google Scholar

[13]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", third edition, (2003).   Google Scholar

[14]

W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kinetic activator-inhibitor system,, J. Differential Equations, 229 (2006), 426.  doi: 10.1016/j.jde.2006.03.011.  Google Scholar

[15]

W.-M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type,, Trans. Amer. Math. Soc., 297 (1986), 351.  doi: 10.2307/2000473.  Google Scholar

[16]

F. Rothe, "Global Solutions of Reaction-Diffusion Equations,", Lecture Notes in Math., 1072 (1984).   Google Scholar

[17]

A. Turing, The chemical basis of morphogenesis,, Philos. Transl. Roy. Soc. London, B237 (1952), 37.   Google Scholar

[18]

J. Wei, Existence and stability of spikes for the Gierer-Meinhardt sytem,, Handbook of Differential Equations, 5 (2008).  doi: 10.1016/S1874-5733(08)80013-7.  Google Scholar

[19]

E. Yanagida, Reaction-diffusion systems with skew-gradient structure,, Meth. Appl. Anal., 8 (2001), 209.   Google Scholar

[20]

E. Yanagida, Mini-maximizers for reaction-diffusion systems with skew-gradient structure,, J. Differential Equations, 179 (2002), 311.  doi: 10.1006/jdeq.2001.4028.  Google Scholar

show all references

References:
[1]

N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations,, J. Differential Equations, 33 (1979), 201.  doi: 10.1016/0022-0396(79)90088-3.  Google Scholar

[2]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30.   Google Scholar

[3]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[4]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Math., 840 (1981).   Google Scholar

[5]

H. Hoshino and Y. Yamada, Sovability and smoothing effect for semilinear parabolic equations,, Funkcialaj Ekvacioj, 34 (1991), 475.   Google Scholar

[6]

D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model,, Physica D, 150 (2001), 25.  doi: 10.1016/S0167-2789(00)00206-2.  Google Scholar

[7]

H. Jiang, Global existence of solutions of an activator-inhibitor system,, Discrete and Continuous Dynamical Systems, 14 (2006), 737.  doi: 10.3934/dcds.2006.14.737.  Google Scholar

[8]

H. Jiang and W.-M. Ni, A priori estimates of stationary solutions of an activator-inhibitor system,, Indiana Univ. Math. J., 56 (2007), 681.  doi: 10.1512/iumj.2007.56.2982.  Google Scholar

[9]

A. J. Koch and H. Meinhardt, Biological pattern formation: From basic mechanism to complex structure,, Rev. Modern Physiscs, 66 (1994), 1481.   Google Scholar

[10]

E. Latos, T. Suzuki and Y. Yamada, Transient and asymptotic dynamics of a prey-predator system with diffusion,, to appear in; Math. Meth. Appl. Sci., ().  doi: 10.1002/mma.2524.  Google Scholar

[11]

F. Li and W.-M. Ni, On the global existence and finite time blow-up of shadow systems,, J. Differential Equations, 247 (2009), 1762.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[12]

K. Masuda and T. Takahashi, Reaction-diffusion systems in Gierer-Meinhardt theory in biological pattern formation,, Japan J. Appl. Math., 4 (1987), 47.  doi: 10.1007/BF03167754.  Google Scholar

[13]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", third edition, (2003).   Google Scholar

[14]

W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kinetic activator-inhibitor system,, J. Differential Equations, 229 (2006), 426.  doi: 10.1016/j.jde.2006.03.011.  Google Scholar

[15]

W.-M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type,, Trans. Amer. Math. Soc., 297 (1986), 351.  doi: 10.2307/2000473.  Google Scholar

[16]

F. Rothe, "Global Solutions of Reaction-Diffusion Equations,", Lecture Notes in Math., 1072 (1984).   Google Scholar

[17]

A. Turing, The chemical basis of morphogenesis,, Philos. Transl. Roy. Soc. London, B237 (1952), 37.   Google Scholar

[18]

J. Wei, Existence and stability of spikes for the Gierer-Meinhardt sytem,, Handbook of Differential Equations, 5 (2008).  doi: 10.1016/S1874-5733(08)80013-7.  Google Scholar

[19]

E. Yanagida, Reaction-diffusion systems with skew-gradient structure,, Meth. Appl. Anal., 8 (2001), 209.   Google Scholar

[20]

E. Yanagida, Mini-maximizers for reaction-diffusion systems with skew-gradient structure,, J. Differential Equations, 179 (2002), 311.  doi: 10.1006/jdeq.2001.4028.  Google Scholar

[1]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

[2]

Juncheng Wei, Matthias Winter. On the Gierer-Meinhardt system with precursors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 363-398. doi: 10.3934/dcds.2009.25.363

[3]

Manuel del Pino, Patricio Felmer, Michal Kowalczyk. Boundary spikes in the Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2002, 1 (4) : 437-456. doi: 10.3934/cpaa.2002.1.437

[4]

Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583

[5]

Shin-Ichiro Ei, Kota Ikeda, Yasuhito Miyamoto. Dynamics of a boundary spike for the shadow Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 115-145. doi: 10.3934/cpaa.2012.11.115

[6]

Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651

[7]

Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks & Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291

[8]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[9]

Rui Peng, Xianfa Song, Lei Wei. Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4489-4505. doi: 10.3934/dcds.2017192

[10]

Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033

[11]

Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183

[12]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031

[13]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[14]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[15]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[16]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[17]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[18]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[19]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[20]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]