-
Previous Article
The splitting lemmas for nonsmooth functionals on Hilbert spaces I
- DCDS Home
- This Issue
-
Next Article
Partial hyperbolicity and central shadowing
Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations
1. | Department of Mathematics & National Center for Theoretical Sciences at Taipei, National Taiwan University, Taipei, 10617, Taiwan |
2. | Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811 |
References:
[1] |
Bulletin Soc. Math. France, Mémoire, 1992. |
[2] |
Arch. Ration. Mech. Anal., 140 (1997), 285-300.
doi: 10.1007/s002050050067. |
[3] |
Journal of the London Mathematical Society, 75 (2007), 67-82.
doi: 10.1112/jlms/jdl020. |
[4] |
Comm. Math. Phys., 235 (2003), 427-466.
doi: 10.1007/s00220-003-0811-y. |
[5] |
Arch. Ration. Mech. Anal., 159 (2001), 253-271.
doi: 10.1007/s002050100152. |
[6] |
Calc. Var. Partial Diff. Eqns., 11 (2000), 63-95.
doi: 10.1007/s005260050003. |
[7] |
Mathematische Annalen, 388 (2007), 147-185.
doi: 10.1007/s00208-006-0071-1. |
[8] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259-281.
doi: 10.1016/j.anihpc.2004.07.005. |
[9] |
Arch. Ration. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[10] |
Proc. Amer Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[11] |
Bull. Amer. Math. Soc., 71 (1965), 644-648. |
[12] |
Arch. Ration. Mech. Anal., 165 (2002), 295-316.
doi: 10.1007/s00205-002-0225-6. |
[13] |
J. Differential Equations, 160 (2000), 118-138.
doi: 10.1006/jdeq.1999.3662. |
[14] |
Calc. Var. Partial Differential Equations, 17 (2003), 257-281. |
[15] |
Ann. Inst. H. Poincaré Anal. Non Lineairé, 13 (1996), 567-588. |
[16] |
J. Funct. Anal., 149 (1997), 245-265.
doi: 10.1006/jfan.1996.3085. |
[17] |
Comm. Pure Appl. Math., 60 (2007), 113-146.
doi: 10.1002/cpa.20135. |
[18] |
J. Math. Anal. Appl., 17 (1974), 324-353. |
[19] |
Ann. I. H. Poincaré-AN, 25 (2008), 149-161.
doi: 10.1016/j.anihpc.2006.11.006. |
[20] |
J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[21] |
Ann. Inst. H. Poincare Anal. NonLineaire, 19 (2002), 261-280.
doi: 10.1016/S0294-1449(01)00089-0. |
[22] |
Adv. Differential Equations, 2 (1997), 955-980. |
[23] |
NoDEA: Nonlinear Differential Equations and Applications, 16 (2009), 555-567.
doi: 10.1007/s00030-009-0017-x. |
[24] |
Nature, 392 (1998), 151-154. Google Scholar |
[25] |
Phys. Rev. Lett., 81 (1998), 3108-3111. Google Scholar |
[26] |
Science, 296 (2002), 1290-1293. Google Scholar |
[27] |
Arch. Rat. Math. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502. |
[28] |
Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 109-145. |
[29] |
Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 223-283. |
[30] |
Ann. I. H. Poincaré-AN, 22 (2005), 403-439.
doi: 10.1016/j.anihpc.2004.03.004. |
[31] |
Comm. Math. Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x. |
[32] |
Comm. Math. Phys., 277 (2008), 573-576. |
[33] |
J. Differential Equations, 229 (2006), 538-569.
doi: 10.1016/j.jde.2005.12.011. |
[34] |
J. Math. Anal. Appl., 348 (2008), 169-179.
doi: 10.1016/j.jmaa.2008.06.042. |
[35] |
J. Differential Equations, 229 (2006), 743-767.
doi: 10.1016/j.jde.2006.07.002. |
[36] |
Oxford, 2003. |
[37] |
Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[38] |
Ann. Mat. Pura Appl., 4 (2002), 73-83.
doi: 10.1007/s102310200029. |
[39] |
Comm. Math. Phys., 271 (2007), 199-221.
doi: 10.1007/s00220-006-0179-x. |
[40] |
Comm. Math. Phys., (1993), 229-244. |
[41] |
SIAM J. Math. Anal., 28 (1997), 633-655.
doi: 10.1137/S0036141095290240. |
[42] |
Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
show all references
References:
[1] |
Bulletin Soc. Math. France, Mémoire, 1992. |
[2] |
Arch. Ration. Mech. Anal., 140 (1997), 285-300.
doi: 10.1007/s002050050067. |
[3] |
Journal of the London Mathematical Society, 75 (2007), 67-82.
doi: 10.1112/jlms/jdl020. |
[4] |
Comm. Math. Phys., 235 (2003), 427-466.
doi: 10.1007/s00220-003-0811-y. |
[5] |
Arch. Ration. Mech. Anal., 159 (2001), 253-271.
doi: 10.1007/s002050100152. |
[6] |
Calc. Var. Partial Diff. Eqns., 11 (2000), 63-95.
doi: 10.1007/s005260050003. |
[7] |
Mathematische Annalen, 388 (2007), 147-185.
doi: 10.1007/s00208-006-0071-1. |
[8] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259-281.
doi: 10.1016/j.anihpc.2004.07.005. |
[9] |
Arch. Ration. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[10] |
Proc. Amer Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[11] |
Bull. Amer. Math. Soc., 71 (1965), 644-648. |
[12] |
Arch. Ration. Mech. Anal., 165 (2002), 295-316.
doi: 10.1007/s00205-002-0225-6. |
[13] |
J. Differential Equations, 160 (2000), 118-138.
doi: 10.1006/jdeq.1999.3662. |
[14] |
Calc. Var. Partial Differential Equations, 17 (2003), 257-281. |
[15] |
Ann. Inst. H. Poincaré Anal. Non Lineairé, 13 (1996), 567-588. |
[16] |
J. Funct. Anal., 149 (1997), 245-265.
doi: 10.1006/jfan.1996.3085. |
[17] |
Comm. Pure Appl. Math., 60 (2007), 113-146.
doi: 10.1002/cpa.20135. |
[18] |
J. Math. Anal. Appl., 17 (1974), 324-353. |
[19] |
Ann. I. H. Poincaré-AN, 25 (2008), 149-161.
doi: 10.1016/j.anihpc.2006.11.006. |
[20] |
J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[21] |
Ann. Inst. H. Poincare Anal. NonLineaire, 19 (2002), 261-280.
doi: 10.1016/S0294-1449(01)00089-0. |
[22] |
Adv. Differential Equations, 2 (1997), 955-980. |
[23] |
NoDEA: Nonlinear Differential Equations and Applications, 16 (2009), 555-567.
doi: 10.1007/s00030-009-0017-x. |
[24] |
Nature, 392 (1998), 151-154. Google Scholar |
[25] |
Phys. Rev. Lett., 81 (1998), 3108-3111. Google Scholar |
[26] |
Science, 296 (2002), 1290-1293. Google Scholar |
[27] |
Arch. Rat. Math. Anal., 105 (1989), 243-266.
doi: 10.1007/BF00251502. |
[28] |
Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 109-145. |
[29] |
Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 223-283. |
[30] |
Ann. I. H. Poincaré-AN, 22 (2005), 403-439.
doi: 10.1016/j.anihpc.2004.03.004. |
[31] |
Comm. Math. Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x. |
[32] |
Comm. Math. Phys., 277 (2008), 573-576. |
[33] |
J. Differential Equations, 229 (2006), 538-569.
doi: 10.1016/j.jde.2005.12.011. |
[34] |
J. Math. Anal. Appl., 348 (2008), 169-179.
doi: 10.1016/j.jmaa.2008.06.042. |
[35] |
J. Differential Equations, 229 (2006), 743-767.
doi: 10.1016/j.jde.2006.07.002. |
[36] |
Oxford, 2003. |
[37] |
Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[38] |
Ann. Mat. Pura Appl., 4 (2002), 73-83.
doi: 10.1007/s102310200029. |
[39] |
Comm. Math. Phys., 271 (2007), 199-221.
doi: 10.1007/s00220-006-0179-x. |
[40] |
Comm. Math. Phys., (1993), 229-244. |
[41] |
SIAM J. Math. Anal., 28 (1997), 633-655.
doi: 10.1137/S0036141095290240. |
[42] |
Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[1] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[2] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[3] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[4] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[5] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[6] |
Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021054 |
[7] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[8] |
Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021061 |
[9] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[10] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[11] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[12] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[13] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[14] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[17] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[18] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[19] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376 |
[20] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]