-
Previous Article
Regular maps with the specification property
- DCDS Home
- This Issue
-
Next Article
Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations
The splitting lemmas for nonsmooth functionals on Hilbert spaces I
1. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China |
References:
[1] |
Adv. Nonlinear Stud., 9 (2009), 597-623. |
[2] |
J. Funct. Anal., 186 (2001), 117-152.
doi: 10.1006/jfan.2001.3789. |
[3] |
Math. Z., 233 (2000), 655-677.
doi: 10.1007/s002090050492. |
[4] |
in "Handbook of Global Analysis" Elsevier Science Ltd, (2008), 41-73.
doi: 10.1016/B978-044452833-9.50003-6. |
[5] |
Ann. Sci. Math. Quebec, 22 (1998), 131-148. |
[6] |
Topol. Methods Nonlinear Anal., 16 (2000), 279-306. |
[7] |
Acad. Press, New York-London, 1977. |
[8] |
C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 465-472. |
[9] |
Bull. Amer. Math. Soc. (N.S), 9 (1983), 1-39.
doi: 10.1090/S0273-0979-1983-15153-4. |
[10] |
Univ. de Montreal, 97, 1985. |
[11] |
Birkhäuser, 1993. |
[12] |
Springer Monogaphs in Mathematics, Springer, 2005. |
[13] |
C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 441-446. |
[14] |
Adv. Nonlinear Stud., 9 (2009), 679-699. |
[15] |
Wiley, New York, 1983. |
[16] |
Springer, New York, 1990. |
[17] |
J. Math. Anal. Appl., 196 (1995), 1050-1072.
doi: 10.1006/jmaa.1995.1460. |
[18] |
Gauthier-Villars, 1963. |
[19] |
Proc. Amer. Math. Soc., 135 (2007), 921-927.
doi: 10.1090/S0002-9939-06-08662-X. |
[20] |
Topological Methods in Nonlinear Analysis, 29 (2007), 35-68. |
[21] |
J. Funct. Anal., 124 (1994), 1-39.
doi: 10.1006/jfan.1994.1096. |
[22] |
A.I.H.P. Analyse Non linéaire, 6 (1989), 321-330. |
[23] |
Topology, 8 (1969), 361-369. |
[24] |
in "Nonlinear functional analysis and its applications, Part 1" (Berkeley, Calif., 1983), Proc. Symp. Pure Math., 45, Part 1, Providence, RI, (1986), 501-509. |
[25] |
Springer-Verlag, 1975. |
[26] |
in "Recent Developments in Optimization Theory and Nonlinear Analysis" (Jerusalem, 1995), Contemp. Math., 204, Amer. Math. Soc., Providence, RI, (1997), 139-147.
doi: 10.1090/conm/204/02627. |
[27] |
Nonlinear Analysis, 36 (1999), 943-960.
doi: 10.1016/S0362-546X(97)00701-3. |
[28] |
John wiley & Sons. Ins. 1978. |
[29] |
$2^{nd}$ edition, Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4684-0265-0. |
[30] |
J. Funct. Anal., 221 (2005), 439-455.
doi: 10.1016/j.jfa.2004.09.010. |
[31] |
J. Differential Equations, 244 (2008), 2498-2528.
doi: 10.1016/j.jde.2008.02.021. |
[32] |
J. Funct. Anal., 261 (2011), 542-589.
doi: 10.1016/j.jfa.2009.01.001. |
[33] |
G. Lu, The splitting lemmas for nonsmooth functionals on Hilbert spaces,, preprint, (). Google Scholar |
[34] |
G. Lu, Some critical point theorems and applications,, preprint, (). Google Scholar |
[35] |
G. Lu, Methods of infinite dimensional Morse theory for geodesics on Finsler manifolds,, preprint, (). Google Scholar |
[36] |
Bull. Soc. Math., Belgique (B), 37 (1985), 23-29. |
[37] |
Applied Mathematical Sciences 74, Springer-Verlag, New York, 1989. |
[38] |
Abstract and Applied Analysis, 5 (2000), 113-118.
doi: 10.1155/S1085337500000245. |
[39] |
J. Anal. Math., 76 (1998), 289-319.
doi: 10.1007/BF02786939. |
[40] |
Mathematical Surveys and Monographs 161, American Mathematical Society, Providence Rhode Island 2010. |
[41] |
Academic Press, New York-London, 1971. |
[42] |
Springer, Berlin, 2007.
doi: 10.1007/978-3-540-71333-3. |
[43] |
[in Russian], Naukova Dumka, Kiev 1973. |
[44] |
Teubner, Leipzig, 1986. |
[45] |
Math. Ann., 263 (1983), 303-312.
doi: 10.1007/BF01457133. |
[46] |
J. Sov. Math., 67 (1993), 2713-2811.
doi: 10.1007/BF01455151. |
show all references
References:
[1] |
Adv. Nonlinear Stud., 9 (2009), 597-623. |
[2] |
J. Funct. Anal., 186 (2001), 117-152.
doi: 10.1006/jfan.2001.3789. |
[3] |
Math. Z., 233 (2000), 655-677.
doi: 10.1007/s002090050492. |
[4] |
in "Handbook of Global Analysis" Elsevier Science Ltd, (2008), 41-73.
doi: 10.1016/B978-044452833-9.50003-6. |
[5] |
Ann. Sci. Math. Quebec, 22 (1998), 131-148. |
[6] |
Topol. Methods Nonlinear Anal., 16 (2000), 279-306. |
[7] |
Acad. Press, New York-London, 1977. |
[8] |
C. R. Acad. Sci. Paris Sér. I Math., 317 (1993), 465-472. |
[9] |
Bull. Amer. Math. Soc. (N.S), 9 (1983), 1-39.
doi: 10.1090/S0273-0979-1983-15153-4. |
[10] |
Univ. de Montreal, 97, 1985. |
[11] |
Birkhäuser, 1993. |
[12] |
Springer Monogaphs in Mathematics, Springer, 2005. |
[13] |
C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 441-446. |
[14] |
Adv. Nonlinear Stud., 9 (2009), 679-699. |
[15] |
Wiley, New York, 1983. |
[16] |
Springer, New York, 1990. |
[17] |
J. Math. Anal. Appl., 196 (1995), 1050-1072.
doi: 10.1006/jmaa.1995.1460. |
[18] |
Gauthier-Villars, 1963. |
[19] |
Proc. Amer. Math. Soc., 135 (2007), 921-927.
doi: 10.1090/S0002-9939-06-08662-X. |
[20] |
Topological Methods in Nonlinear Analysis, 29 (2007), 35-68. |
[21] |
J. Funct. Anal., 124 (1994), 1-39.
doi: 10.1006/jfan.1994.1096. |
[22] |
A.I.H.P. Analyse Non linéaire, 6 (1989), 321-330. |
[23] |
Topology, 8 (1969), 361-369. |
[24] |
in "Nonlinear functional analysis and its applications, Part 1" (Berkeley, Calif., 1983), Proc. Symp. Pure Math., 45, Part 1, Providence, RI, (1986), 501-509. |
[25] |
Springer-Verlag, 1975. |
[26] |
in "Recent Developments in Optimization Theory and Nonlinear Analysis" (Jerusalem, 1995), Contemp. Math., 204, Amer. Math. Soc., Providence, RI, (1997), 139-147.
doi: 10.1090/conm/204/02627. |
[27] |
Nonlinear Analysis, 36 (1999), 943-960.
doi: 10.1016/S0362-546X(97)00701-3. |
[28] |
John wiley & Sons. Ins. 1978. |
[29] |
$2^{nd}$ edition, Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4684-0265-0. |
[30] |
J. Funct. Anal., 221 (2005), 439-455.
doi: 10.1016/j.jfa.2004.09.010. |
[31] |
J. Differential Equations, 244 (2008), 2498-2528.
doi: 10.1016/j.jde.2008.02.021. |
[32] |
J. Funct. Anal., 261 (2011), 542-589.
doi: 10.1016/j.jfa.2009.01.001. |
[33] |
G. Lu, The splitting lemmas for nonsmooth functionals on Hilbert spaces,, preprint, (). Google Scholar |
[34] |
G. Lu, Some critical point theorems and applications,, preprint, (). Google Scholar |
[35] |
G. Lu, Methods of infinite dimensional Morse theory for geodesics on Finsler manifolds,, preprint, (). Google Scholar |
[36] |
Bull. Soc. Math., Belgique (B), 37 (1985), 23-29. |
[37] |
Applied Mathematical Sciences 74, Springer-Verlag, New York, 1989. |
[38] |
Abstract and Applied Analysis, 5 (2000), 113-118.
doi: 10.1155/S1085337500000245. |
[39] |
J. Anal. Math., 76 (1998), 289-319.
doi: 10.1007/BF02786939. |
[40] |
Mathematical Surveys and Monographs 161, American Mathematical Society, Providence Rhode Island 2010. |
[41] |
Academic Press, New York-London, 1971. |
[42] |
Springer, Berlin, 2007.
doi: 10.1007/978-3-540-71333-3. |
[43] |
[in Russian], Naukova Dumka, Kiev 1973. |
[44] |
Teubner, Leipzig, 1986. |
[45] |
Math. Ann., 263 (1983), 303-312.
doi: 10.1007/BF01457133. |
[46] |
J. Sov. Math., 67 (1993), 2713-2811.
doi: 10.1007/BF01455151. |
[1] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[2] |
V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511 |
[3] |
Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025 |
[4] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[5] |
Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027 |
[6] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[7] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[8] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[9] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[10] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[11] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[12] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021019 |
[13] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[14] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[15] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[16] |
Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040 |
[17] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[18] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[19] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[20] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]