-
Previous Article
Improved geodesics for the reduced curvature-dimension condition in branching metric spaces
- DCDS Home
- This Issue
-
Next Article
Regular maps with the specification property
Geometry of stationary solutions for a system of vortex filaments: A dynamical approach
1. | Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, 73100, Lecce |
2. | Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 73100 Lecce |
References:
[1] |
Int. Math. Res. Not. IMRN 2008, Art. ID rnn 069, 78 pp. |
[2] |
Commun. Pure Appl. Anal., 2 (2003), 323-353.
doi: 10.3934/cpaa.2003.2.323. |
[3] |
Nonlinear Anal., 72 (2010), 2874-2890.
doi: 10.1016/j.na.2009.11.032. |
[4] |
Laurea Magistrale dissertation at University of Milano-Bicocca, 2004. Google Scholar |
[5] |
R. Castelli, F. Paparella and A. Portaluri, Singular dynamics under a weak potential on a sphere,, To appear in NoDEA. , ().
doi: 10.1007/s00030-012-0182-1. |
[6] |
Discrete Contin. Dyn. Syst., 31 (2011), 1197-1218.
doi: 10.3934/dcds.2011.31.1197. |
[7] |
Journal of Differential Equations, 253 (2012), 463-480.
doi: 10.1016/j.jde.2012.04.008. |
[8] |
Duke Math. J., 81 (1996), 255-268.
doi: 10.1215/S0012-7094-96-08114-4. |
[9] |
Invent. Math., 60 (1980), 249-267.
doi: 10.1007/BF01390017. |
[10] |
in "Ergodic Theory and Dynamical Systems, I" (College Park, Md., 1979-80), 10 of Progr. Math. Birkhäuser Boston, Mass., (1981), 211-333. |
[11] |
Differential Integral Equations, 5 (1992), 103-136. |
[12] |
Adv. in Math., 213 (2007), 763-784.
doi: 10.1016/j.aim.2007.01.009. |
[13] |
Nonlinearity, 21 (2008), 1307-1321.
doi: 10.1088/0951-7715/21/6/009. |
[14] |
Davide L. Ferrario and Alessandro Portaluri, Dynamics of the the dihedral four-body problem,, To appear in DCDS-S, (). Google Scholar |
[15] |
C. R. Math. Acad. Sci. Paris, 338 (2004), 397-402.
doi: 10.1016/j.crma.2004.01.004. |
[16] |
Lecture Notes in Mathematics, 583. Springer-Verlag, Berlin-New York, 1977. |
[17] |
J. Fluid Mech., 288 (1995), 201-248.
doi: 10.1017/S0022112095001121. |
[18] |
Invent. Math., 27 (1974), 191-227. |
[19] |
Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4684-9290-3. |
[20] |
Acta. Appl. Math., 122 (2012), 349-366.
doi: 10.1007/s10440-012-9748-5. |
[21] |
Arch. Rational Mech. Anal., 30 (1968), 263-269. |
[22] |
(Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), 255-259. Academic Press, New York, (1970). |
[23] |
Alessandro Portaluri, Maslov index for Hamiltonian systems,, Electron. J. Differential Equations, 2008 ().
|
[24] |
D. G. Saari, Singularities and collisions of Newtonian gravitational systems,, Arch. Rational Mech. Anal., 49 (): 311.
|
[25] |
J. Reine Angew. Math., 245 (1970), 15-40. |
[26] |
Acta Soc. Sci. Fenn., 35 (1909), 9. Google Scholar |
[27] |
J. Phys. A, 36 (2003), 7693-7714.
doi: 10.1088/0305-4470/36/28/302. |
[28] |
Princeton Mathematical Series, 5, Princeton University Press, Princeton, N. J., 1941. |
show all references
References:
[1] |
Int. Math. Res. Not. IMRN 2008, Art. ID rnn 069, 78 pp. |
[2] |
Commun. Pure Appl. Anal., 2 (2003), 323-353.
doi: 10.3934/cpaa.2003.2.323. |
[3] |
Nonlinear Anal., 72 (2010), 2874-2890.
doi: 10.1016/j.na.2009.11.032. |
[4] |
Laurea Magistrale dissertation at University of Milano-Bicocca, 2004. Google Scholar |
[5] |
R. Castelli, F. Paparella and A. Portaluri, Singular dynamics under a weak potential on a sphere,, To appear in NoDEA. , ().
doi: 10.1007/s00030-012-0182-1. |
[6] |
Discrete Contin. Dyn. Syst., 31 (2011), 1197-1218.
doi: 10.3934/dcds.2011.31.1197. |
[7] |
Journal of Differential Equations, 253 (2012), 463-480.
doi: 10.1016/j.jde.2012.04.008. |
[8] |
Duke Math. J., 81 (1996), 255-268.
doi: 10.1215/S0012-7094-96-08114-4. |
[9] |
Invent. Math., 60 (1980), 249-267.
doi: 10.1007/BF01390017. |
[10] |
in "Ergodic Theory and Dynamical Systems, I" (College Park, Md., 1979-80), 10 of Progr. Math. Birkhäuser Boston, Mass., (1981), 211-333. |
[11] |
Differential Integral Equations, 5 (1992), 103-136. |
[12] |
Adv. in Math., 213 (2007), 763-784.
doi: 10.1016/j.aim.2007.01.009. |
[13] |
Nonlinearity, 21 (2008), 1307-1321.
doi: 10.1088/0951-7715/21/6/009. |
[14] |
Davide L. Ferrario and Alessandro Portaluri, Dynamics of the the dihedral four-body problem,, To appear in DCDS-S, (). Google Scholar |
[15] |
C. R. Math. Acad. Sci. Paris, 338 (2004), 397-402.
doi: 10.1016/j.crma.2004.01.004. |
[16] |
Lecture Notes in Mathematics, 583. Springer-Verlag, Berlin-New York, 1977. |
[17] |
J. Fluid Mech., 288 (1995), 201-248.
doi: 10.1017/S0022112095001121. |
[18] |
Invent. Math., 27 (1974), 191-227. |
[19] |
Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4684-9290-3. |
[20] |
Acta. Appl. Math., 122 (2012), 349-366.
doi: 10.1007/s10440-012-9748-5. |
[21] |
Arch. Rational Mech. Anal., 30 (1968), 263-269. |
[22] |
(Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), 255-259. Academic Press, New York, (1970). |
[23] |
Alessandro Portaluri, Maslov index for Hamiltonian systems,, Electron. J. Differential Equations, 2008 ().
|
[24] |
D. G. Saari, Singularities and collisions of Newtonian gravitational systems,, Arch. Rational Mech. Anal., 49 (): 311.
|
[25] |
J. Reine Angew. Math., 245 (1970), 15-40. |
[26] |
Acta Soc. Sci. Fenn., 35 (1909), 9. Google Scholar |
[27] |
J. Phys. A, 36 (2003), 7693-7714.
doi: 10.1088/0305-4470/36/28/302. |
[28] |
Princeton Mathematical Series, 5, Princeton University Press, Princeton, N. J., 1941. |
[1] |
Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 |
[2] |
Luis Vega. The dynamics of vortex filaments with corners. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1581-1601. doi: 10.3934/cpaa.2015.14.1581 |
[3] |
Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral four-body problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 925-974. doi: 10.3934/dcdss.2013.6.925 |
[4] |
Shiqing Zhang, Qing Zhou. Nonplanar and noncollision periodic solutions for $N$-body problems. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 679-685. doi: 10.3934/dcds.2004.10.679 |
[5] |
Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233 |
[6] |
P.K. Newton. N-vortex equilibrium theory. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411 |
[7] |
Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523 |
[8] |
Juan J. Morales-Ruiz, Sergi Simon. On the meromorphic non-integrability of some $N$-body problems. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1225-1273. doi: 10.3934/dcds.2009.24.1225 |
[9] |
Sun-Sig Byun, Yumi Cho, Shuang Liang. Calderón-Zygmund estimates for quasilinear elliptic double obstacle problems with variable exponent and logarithmic growth. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3843-3855. doi: 10.3934/dcdsb.2020038 |
[10] |
Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55 |
[11] |
Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240 |
[12] |
P.K. Newton, M. Ruith, E. Upchurch. The constrained planar N-vortex problem: I. Integrability. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 137-152. doi: 10.3934/dcdsb.2005.5.137 |
[13] |
Chiun-Chuan Chen, Li-Chang Hung, Chen-Chih Lai. An N-barrier maximum principle for autonomous systems of $n$ species and its application to problems arising from population dynamics. Communications on Pure & Applied Analysis, 2019, 18 (1) : 33-50. doi: 10.3934/cpaa.2019003 |
[14] |
Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589 |
[15] |
Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35 |
[16] |
Montserrat Corbera, Jaume Llibre. On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1049-1060. doi: 10.3934/dcds.2013.33.1049 |
[17] |
Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245 |
[18] |
Fernando Jiménez, Jürgen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb{R}^n$. Journal of Geometric Mechanics, 2015, 7 (1) : 43-80. doi: 10.3934/jgm.2015.7.43 |
[19] |
Perikles G. Papadopoulos, Nikolaos M. Stavrakakis. Global existence for a wave equation on $R^n$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 139-149. doi: 10.3934/dcdss.2008.1.139 |
[20] |
Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]