July  2013, 33(7): 3011-3042. doi: 10.3934/dcds.2013.33.3011

Geometry of stationary solutions for a system of vortex filaments: A dynamical approach

1. 

Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, 73100, Lecce

2. 

Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, 73100 Lecce

Received  April 2012 Revised  October 2012 Published  January 2013

We give a detailed analytical description of the global dynamics of $N$ points interacting through the singular logarithmic potential and subject to the following symmetry constraint: at each instant they form an orbit of the dihedral group $D_l$ of order $2l$. The main device in order to achieve our results is a technique very popular in Celestial Mechanics, usually referred to as McGehee transformation. After performing this change of coordinates that regularizes the total collision, we study the rest-points of the flow, the invariant manifolds and, with the help of a computer algebra system, we derive interesting information about the global dynamics for $l=2$. We observe that our problem is equivalent to studying the geometry of stationary configurations of nearly-parallel vortex filaments in three dimensions in the LIA approximation.
Citation: Francesco Paparella, Alessandro Portaluri. Geometry of stationary solutions for a system of vortex filaments: A dynamical approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3011-3042. doi: 10.3934/dcds.2013.33.3011
References:
[1]

Vivina Barutello, Davide L. Ferrario and Susanna Terracini, On the singularities of generalized solutions to $n$-body-type problems,, Int. Math. Res. Not. IMRN 2008, (2008).   Google Scholar

[2]

G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two body problem via smoothing the potential,, Commun. Pure Appl. Anal., 2 (2003), 323.  doi: 10.3934/cpaa.2003.2.323.  Google Scholar

[3]

Anna Capietto, Francesca Dalbono and Alessandro Portaluri, A multiplicity result for a class of strongly indefinite asymptotically linear second order systems,, Nonlinear Anal., 72 (2010), 2874.  doi: 10.1016/j.na.2009.11.032.  Google Scholar

[4]

Castelli Roberto, "Moti Periodici di Filamenti Vorticosi Quasi-Paralleli,", Laurea Magistrale dissertation at University of Milano-Bicocca, (2004).   Google Scholar

[5]

R. Castelli, F. Paparella and A. Portaluri, Singular dynamics under a weak potential on a sphere,, To appear in NoDEA. , ().  doi: 10.1007/s00030-012-0182-1.  Google Scholar

[6]

Castelli Roberto and Terracini Susanna, On the regularization of the collision solutions of the one-center problem with weak forces,, Discrete Contin. Dyn. Syst., 31 (2011), 1197.  doi: 10.3934/dcds.2011.31.1197.  Google Scholar

[7]

F. Dalbono and A. Portaluri, Morse-Smale index theorems for elliptic boundary deformation problems,, Journal of Differential Equations, 253 (2012), 463.  doi: 10.1016/j.jde.2012.04.008.  Google Scholar

[8]

Ennio De Giorgi, Conjectures concerning some evolution problems,, Duke Math. J., 81 (1996), 255.  doi: 10.1215/S0012-7094-96-08114-4.  Google Scholar

[9]

R. L. Devaney, Triple collision in the planar isosceles three-body problem,, Invent. Math., 60 (1980), 249.  doi: 10.1007/BF01390017.  Google Scholar

[10]

R. L. Devaney, Singularities in classical mechanical systems,, in, 10 (1981), 1979.   Google Scholar

[11]

F. Diacu, Regularization of partial collisions in the N -body problem,, Differential Integral Equations, 5 (1992), 103.   Google Scholar

[12]

Davide L. Ferrario, Transitive decomposition of symmetry groups for the $n$-body problem,, Adv. in Math., 213 (2007), 763.  doi: 10.1016/j.aim.2007.01.009.  Google Scholar

[13]

Davide L. Ferrario and Alessandro Portaluri, On the dihedral $n$- body problem,, Nonlinearity, 21 (2008), 1307.  doi: 10.1088/0951-7715/21/6/009.  Google Scholar

[14]

Davide L. Ferrario and Alessandro Portaluri, Dynamics of the the dihedral four-body problem,, To appear in DCDS-S, ().   Google Scholar

[15]

Roberto Giambò, Paolo Piccione and Alessandro Portaluri, Computation of the Maslov index and the spectral flow via partial signatures,, C. R. Math. Acad. Sci. Paris, 338 (2004), 397.  doi: 10.1016/j.crma.2004.01.004.  Google Scholar

[16]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[17]

Rupert Klein, Andrew J. Majda and Kumaran Damodaran, Simplified equations for the interaction of nearly parallel vortex filaments,, J. Fluid Mech., 288 (1995), 201.  doi: 10.1017/S0022112095001121.  Google Scholar

[18]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.   Google Scholar

[19]

Paul Newton, "The $N$-Vortex Problem. Analytical Techniques,", Applied Mathematical Sciences, 145 (2001).  doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[20]

F. Paparella and A. Portaluri, Dynamics of (4 + 1)-Dihedrally symmetric nearly parallel vortex filaments,, Acta. Appl. Math., 122 (2012), 349.  doi: 10.1007/s10440-012-9748-5.  Google Scholar

[21]

H. Pollard and D. G. Saari, Singularities of the n-body problem. I,, Arch. Rational Mech. Anal., 30 (1968), 263.   Google Scholar

[22]

H. Pollard and D. G. Saari, Singularities of the n-body problem. II. In Inequalities, II,, (Proc. Second Sympos., (1970), 255.   Google Scholar

[23]

Alessandro Portaluri, Maslov index for Hamiltonian systems,, Electron. J. Differential Equations, 2008 ().   Google Scholar

[24]

D. G. Saari, Singularities and collisions of Newtonian gravitational systems,, Arch. Rational Mech. Anal., 49 (): 311.   Google Scholar

[25]

H. J. Sperling, On the real singularities of the $N$ -body problem,, J. Reine Angew. Math., 245 (1970), 15.   Google Scholar

[26]

K. F. Sundman, Nouvelles recherches sur le probleme des trois corps,, Acta Soc. Sci. Fenn., 35 (1909).   Google Scholar

[27]

Cristina Stoica and Andreea Font, Global dynamics in the singular logarithmic potential,, J. Phys. A, 36 (2003), 7693.  doi: 10.1088/0305-4470/36/28/302.  Google Scholar

[28]

A. Wintner, "The Analytical Foundations of Celestial Mechanics,", Princeton Mathematical Series, 5 (1941).   Google Scholar

show all references

References:
[1]

Vivina Barutello, Davide L. Ferrario and Susanna Terracini, On the singularities of generalized solutions to $n$-body-type problems,, Int. Math. Res. Not. IMRN 2008, (2008).   Google Scholar

[2]

G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two body problem via smoothing the potential,, Commun. Pure Appl. Anal., 2 (2003), 323.  doi: 10.3934/cpaa.2003.2.323.  Google Scholar

[3]

Anna Capietto, Francesca Dalbono and Alessandro Portaluri, A multiplicity result for a class of strongly indefinite asymptotically linear second order systems,, Nonlinear Anal., 72 (2010), 2874.  doi: 10.1016/j.na.2009.11.032.  Google Scholar

[4]

Castelli Roberto, "Moti Periodici di Filamenti Vorticosi Quasi-Paralleli,", Laurea Magistrale dissertation at University of Milano-Bicocca, (2004).   Google Scholar

[5]

R. Castelli, F. Paparella and A. Portaluri, Singular dynamics under a weak potential on a sphere,, To appear in NoDEA. , ().  doi: 10.1007/s00030-012-0182-1.  Google Scholar

[6]

Castelli Roberto and Terracini Susanna, On the regularization of the collision solutions of the one-center problem with weak forces,, Discrete Contin. Dyn. Syst., 31 (2011), 1197.  doi: 10.3934/dcds.2011.31.1197.  Google Scholar

[7]

F. Dalbono and A. Portaluri, Morse-Smale index theorems for elliptic boundary deformation problems,, Journal of Differential Equations, 253 (2012), 463.  doi: 10.1016/j.jde.2012.04.008.  Google Scholar

[8]

Ennio De Giorgi, Conjectures concerning some evolution problems,, Duke Math. J., 81 (1996), 255.  doi: 10.1215/S0012-7094-96-08114-4.  Google Scholar

[9]

R. L. Devaney, Triple collision in the planar isosceles three-body problem,, Invent. Math., 60 (1980), 249.  doi: 10.1007/BF01390017.  Google Scholar

[10]

R. L. Devaney, Singularities in classical mechanical systems,, in, 10 (1981), 1979.   Google Scholar

[11]

F. Diacu, Regularization of partial collisions in the N -body problem,, Differential Integral Equations, 5 (1992), 103.   Google Scholar

[12]

Davide L. Ferrario, Transitive decomposition of symmetry groups for the $n$-body problem,, Adv. in Math., 213 (2007), 763.  doi: 10.1016/j.aim.2007.01.009.  Google Scholar

[13]

Davide L. Ferrario and Alessandro Portaluri, On the dihedral $n$- body problem,, Nonlinearity, 21 (2008), 1307.  doi: 10.1088/0951-7715/21/6/009.  Google Scholar

[14]

Davide L. Ferrario and Alessandro Portaluri, Dynamics of the the dihedral four-body problem,, To appear in DCDS-S, ().   Google Scholar

[15]

Roberto Giambò, Paolo Piccione and Alessandro Portaluri, Computation of the Maslov index and the spectral flow via partial signatures,, C. R. Math. Acad. Sci. Paris, 338 (2004), 397.  doi: 10.1016/j.crma.2004.01.004.  Google Scholar

[16]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, 583 (1977).   Google Scholar

[17]

Rupert Klein, Andrew J. Majda and Kumaran Damodaran, Simplified equations for the interaction of nearly parallel vortex filaments,, J. Fluid Mech., 288 (1995), 201.  doi: 10.1017/S0022112095001121.  Google Scholar

[18]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.   Google Scholar

[19]

Paul Newton, "The $N$-Vortex Problem. Analytical Techniques,", Applied Mathematical Sciences, 145 (2001).  doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[20]

F. Paparella and A. Portaluri, Dynamics of (4 + 1)-Dihedrally symmetric nearly parallel vortex filaments,, Acta. Appl. Math., 122 (2012), 349.  doi: 10.1007/s10440-012-9748-5.  Google Scholar

[21]

H. Pollard and D. G. Saari, Singularities of the n-body problem. I,, Arch. Rational Mech. Anal., 30 (1968), 263.   Google Scholar

[22]

H. Pollard and D. G. Saari, Singularities of the n-body problem. II. In Inequalities, II,, (Proc. Second Sympos., (1970), 255.   Google Scholar

[23]

Alessandro Portaluri, Maslov index for Hamiltonian systems,, Electron. J. Differential Equations, 2008 ().   Google Scholar

[24]

D. G. Saari, Singularities and collisions of Newtonian gravitational systems,, Arch. Rational Mech. Anal., 49 (): 311.   Google Scholar

[25]

H. J. Sperling, On the real singularities of the $N$ -body problem,, J. Reine Angew. Math., 245 (1970), 15.   Google Scholar

[26]

K. F. Sundman, Nouvelles recherches sur le probleme des trois corps,, Acta Soc. Sci. Fenn., 35 (1909).   Google Scholar

[27]

Cristina Stoica and Andreea Font, Global dynamics in the singular logarithmic potential,, J. Phys. A, 36 (2003), 7693.  doi: 10.1088/0305-4470/36/28/302.  Google Scholar

[28]

A. Wintner, "The Analytical Foundations of Celestial Mechanics,", Princeton Mathematical Series, 5 (1941).   Google Scholar

[1]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[2]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[3]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[4]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[5]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[6]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[7]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[8]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006

[9]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[10]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[11]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[12]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[13]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[14]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[15]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[16]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[17]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[18]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[19]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[20]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]