Advanced Search
Article Contents
Article Contents

Geometry of stationary solutions for a system of vortex filaments: A dynamical approach

Abstract Related Papers Cited by
  • We give a detailed analytical description of the global dynamics of $N$ points interacting through the singular logarithmic potential and subject to the following symmetry constraint: at each instant they form an orbit of the dihedral group $D_l$ of order $2l$. The main device in order to achieve our results is a technique very popular in Celestial Mechanics, usually referred to as McGehee transformation. After performing this change of coordinates that regularizes the total collision, we study the rest-points of the flow, the invariant manifolds and, with the help of a computer algebra system, we derive interesting information about the global dynamics for $l=2$. We observe that our problem is equivalent to studying the geometry of stationary configurations of nearly-parallel vortex filaments in three dimensions in the LIA approximation.
    Mathematics Subject Classification: Primary: 70F10; Secondary: 37C80, 76B47.


    \begin{equation} \\ \end{equation}
  • [1]

    Vivina Barutello, Davide L. Ferrario and Susanna Terracini, On the singularities of generalized solutions to $n$-body-type problems, Int. Math. Res. Not. IMRN 2008, Art. ID rnn 069, 78 pp.


    G. Bellettini, G. Fusco and G. F. Gronchi, Regularization of the two body problem via smoothing the potential, Commun. Pure Appl. Anal., 2 (2003), 323-353.doi: 10.3934/cpaa.2003.2.323.


    Anna Capietto, Francesca Dalbono and Alessandro Portaluri, A multiplicity result for a class of strongly indefinite asymptotically linear second order systems, Nonlinear Anal., 72 (2010), 2874-2890.doi: 10.1016/j.na.2009.11.032.


    Castelli Roberto, "Moti Periodici di Filamenti Vorticosi Quasi-Paralleli," Laurea Magistrale dissertation at University of Milano-Bicocca, 2004.


    R. Castelli, F. Paparella and A. PortaluriSingular dynamics under a weak potential on a sphere, To appear in NoDEA. http://arxiv.org/abs/1109.1128 doi: 10.1007/s00030-012-0182-1.


    Castelli Roberto and Terracini Susanna, On the regularization of the collision solutions of the one-center problem with weak forces, Discrete Contin. Dyn. Syst., 31 (2011), 1197-1218.doi: 10.3934/dcds.2011.31.1197.


    F. Dalbono and A. Portaluri, Morse-Smale index theorems for elliptic boundary deformation problems, Journal of Differential Equations, 253 (2012), 463-480.doi: 10.1016/j.jde.2012.04.008.


    Ennio De Giorgi, Conjectures concerning some evolution problems, Duke Math. J., 81 (1996), 255-268.doi: 10.1215/S0012-7094-96-08114-4.


    R. L. Devaney, Triple collision in the planar isosceles three-body problem, Invent. Math., 60 (1980), 249-267.doi: 10.1007/BF01390017.


    R. L. Devaney, Singularities in classical mechanical systems, in "Ergodic Theory and Dynamical Systems, I" (College Park, Md., 1979-80), 10 of Progr. Math. Birkhäuser Boston, Mass., (1981), 211-333.


    F. Diacu, Regularization of partial collisions in the N -body problem, Differential Integral Equations, 5 (1992), 103-136.


    Davide L. Ferrario, Transitive decomposition of symmetry groups for the $n$-body problem, Adv. in Math., 213 (2007), 763-784.doi: 10.1016/j.aim.2007.01.009.


    Davide L. Ferrario and Alessandro Portaluri, On the dihedral $n$- body problem, Nonlinearity, 21 (2008), 1307-1321.doi: 10.1088/0951-7715/21/6/009.


    Davide L. Ferrario and Alessandro PortaluriDynamics of the the dihedral four-body problem, To appear in DCDS-S, http://arxiv.org/abs/1112.4623


    Roberto Giambò, Paolo Piccione and Alessandro Portaluri, Computation of the Maslov index and the spectral flow via partial signatures, C. R. Math. Acad. Sci. Paris, 338 (2004), 397-402.doi: 10.1016/j.crma.2004.01.004.


    M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Mathematics, 583. Springer-Verlag, Berlin-New York, 1977.


    Rupert Klein, Andrew J. Majda and Kumaran Damodaran, Simplified equations for the interaction of nearly parallel vortex filaments, J. Fluid Mech., 288 (1995), 201-248.doi: 10.1017/S0022112095001121.


    R. McGehee, Triple collision in the collinear three-body problem, Invent. Math., 27 (1974), 191-227.


    Paul Newton, "The $N$-Vortex Problem. Analytical Techniques," Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.doi: 10.1007/978-1-4684-9290-3.


    F. Paparella and A. Portaluri, Dynamics of (4 + 1)-Dihedrally symmetric nearly parallel vortex filaments, Acta. Appl. Math., 122 (2012), 349-366.doi: 10.1007/s10440-012-9748-5.


    H. Pollard and D. G. Saari, Singularities of the n-body problem. I, Arch. Rational Mech. Anal., 30 (1968), 263-269.


    H. Pollard and D. G. Saari, Singularities of the n-body problem. II. In Inequalities, II, (Proc. Second Sympos., U.S. Air Force Acad., Colo., 1967), 255-259. Academic Press, New York, (1970).


    Alessandro PortaluriMaslov index for Hamiltonian systems, Electron. J. Differential Equations, 2008, 10 pp.


    D. G. SaariSingularities and collisions of Newtonian gravitational systems, Arch. Rational Mech. Anal., 49 (1972/73), 311-320.


    H. J. Sperling, On the real singularities of the $N$ -body problem, J. Reine Angew. Math., 245 (1970), 15-40.


    K. F. Sundman, Nouvelles recherches sur le probleme des trois corps, Acta Soc. Sci. Fenn., 35 (1909), 9.


    Cristina Stoica and Andreea Font, Global dynamics in the singular logarithmic potential, J. Phys. A, 36 (2003), 7693-7714.doi: 10.1088/0305-4470/36/28/302.


    A. Wintner, "The Analytical Foundations of Celestial Mechanics," Princeton Mathematical Series, 5, Princeton University Press, Princeton, N. J., 1941.

  • 加载中

Article Metrics

HTML views() PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint