July  2013, 33(7): 3043-3056. doi: 10.3934/dcds.2013.33.3043

Improved geodesics for the reduced curvature-dimension condition in branching metric spaces

1. 

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56127 Pisa, Italy

Received  March 2012 Revised  March 2012 Published  January 2013

In this note we show that in metric measure spaces satisfying the reduced curvature-dimension condition $CD^*(K,N)$ we always have geodesics in the Wasserstein space of probability measures that satisfy the critical convexity inequality of $CD^*(K,N)$ also for intermediate times and in addition the measures along these geodesics have an upper-bound on their densities. This upper-bound depends on the bounds for the densities of the end-point measures, the lower-bound $K$ for the Ricci-curvature, the upper-bound $N$ for the dimension, and on the diameter of the union of the supports of the end-point measures.
Citation: Tapio Rajala. Improved geodesics for the reduced curvature-dimension condition in branching metric spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3043-3056. doi: 10.3934/dcds.2013.33.3043
References:
[1]

K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces,, Journal Funct. Anal., 259 (2010), 28. doi: 10.1016/j.jfa.2010.03.024. Google Scholar

[2]

F. Cavalletti and K.-T. Sturm, Local curvature-dimension condition implies measure-contraction property,, Journal Funct. Anal., 262 (2012), 5110. doi: 10.1016/j.jfa.2012.02.015. Google Scholar

[3]

Q. Deng and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces II,, Journal Funct. Anal., 260 (2011), 3718. doi: 10.1016/j.jfa.2011.02.026. Google Scholar

[4]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport,, Ann. of Math., 169 (2009), 903. doi: 10.4007/annals.2009.169.903. Google Scholar

[5]

T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm,, Journal Funct. Anal., 263 (2012), 896. doi: 10.1016/j.jfa.2012.05.006. Google Scholar

[6]

T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces,, Calc. Var. Partial Differential Equations, 44 (2012), 477. doi: 10.1007/s00526-011-0442-7. Google Scholar

[7]

K.-T. Sturm, On the geometry of metric measure spaces. I,, Acta Math., 196 (2006), 65. doi: 10.1007/s11511-006-0002-8. Google Scholar

[8]

K.-T. Sturm, On the geometry of metric measure spaces. II,, Acta Math., 196 (2006), 133. doi: 10.1007/s11511-006-0003-7. Google Scholar

[9]

C. Villani, "Optimal Transport. Old and New,", 338 of Grundlehren der Mathematischen Wissenschaften, 338 (2009). doi: 10.1007/978-3-540-71050-9. Google Scholar

show all references

References:
[1]

K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces,, Journal Funct. Anal., 259 (2010), 28. doi: 10.1016/j.jfa.2010.03.024. Google Scholar

[2]

F. Cavalletti and K.-T. Sturm, Local curvature-dimension condition implies measure-contraction property,, Journal Funct. Anal., 262 (2012), 5110. doi: 10.1016/j.jfa.2012.02.015. Google Scholar

[3]

Q. Deng and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces II,, Journal Funct. Anal., 260 (2011), 3718. doi: 10.1016/j.jfa.2011.02.026. Google Scholar

[4]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport,, Ann. of Math., 169 (2009), 903. doi: 10.4007/annals.2009.169.903. Google Scholar

[5]

T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm,, Journal Funct. Anal., 263 (2012), 896. doi: 10.1016/j.jfa.2012.05.006. Google Scholar

[6]

T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces,, Calc. Var. Partial Differential Equations, 44 (2012), 477. doi: 10.1007/s00526-011-0442-7. Google Scholar

[7]

K.-T. Sturm, On the geometry of metric measure spaces. I,, Acta Math., 196 (2006), 65. doi: 10.1007/s11511-006-0002-8. Google Scholar

[8]

K.-T. Sturm, On the geometry of metric measure spaces. II,, Acta Math., 196 (2006), 133. doi: 10.1007/s11511-006-0003-7. Google Scholar

[9]

C. Villani, "Optimal Transport. Old and New,", 338 of Grundlehren der Mathematischen Wissenschaften, 338 (2009). doi: 10.1007/978-3-540-71050-9. Google Scholar

[1]

Bang-Xian Han. New characterizations of Ricci curvature on RCD metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4915-4927. doi: 10.3934/dcds.2018214

[2]

Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076

[3]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[4]

Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641

[5]

Alexander J. Zaslavski. Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 245-260. doi: 10.3934/naco.2011.1.245

[6]

Jaeyoo Choy, Hahng-Yun Chu. On the dynamics of flows on compact metric spaces. Communications on Pure & Applied Analysis, 2010, 9 (1) : 103-108. doi: 10.3934/cpaa.2010.9.103

[7]

Rinaldo M. Colombo, Graziano Guerra. Differential equations in metric spaces with applications. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 733-753. doi: 10.3934/dcds.2009.23.733

[8]

Martin Bauer, Martins Bruveris, Philipp Harms, Peter W. Michor. Soliton solutions for the elastic metric on spaces of curves. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1161-1185. doi: 10.3934/dcds.2018049

[9]

Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics & Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017

[10]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

[11]

Roberta Ghezzi, Frédéric Jean. A new class of $(H^k,1)$-rectifiable subsets of metric spaces. Communications on Pure & Applied Analysis, 2013, 12 (2) : 881-898. doi: 10.3934/cpaa.2013.12.881

[12]

Byung-Soo Lee. Existence and convergence results for best proximity points in cone metric spaces. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 133-140. doi: 10.3934/naco.2014.4.133

[13]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[14]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[15]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[16]

Ryan Alvarado, Irina Mitrea, Marius Mitrea. Whitney-type extensions in quasi-metric spaces. Communications on Pure & Applied Analysis, 2013, 12 (1) : 59-88. doi: 10.3934/cpaa.2013.12.59

[17]

Moisey Guysinsky, Serge Yaskolko. Coincidence of various dimensions associated with metrics and measures on metric spaces. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 591-603. doi: 10.3934/dcds.1997.3.591

[18]

Stilianos Louca, Fatihcan M. Atay. Spatially structured networks of pulse-coupled phase oscillators on metric spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3703-3745. doi: 10.3934/dcds.2014.34.3703

[19]

Byung-Soo Lee. Strong convergence theorems with three-step iteration in star-shaped metric spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 371-379. doi: 10.3934/naco.2011.1.371

[20]

Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]