January  2013, 33(1): 305-320. doi: 10.3934/dcds.2013.33.305

Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation

1. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127 Trieste, Italy, Italy

Received  August 2011 Published  September 2012

We discuss existence and regularity of bounded variation solutions of the Dirichlet problem for the one-dimensional capillarity-type equation \begin{equation*} \Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u) \quad \hbox{ in } {]-r,r[}, \qquad u(-r)=a, \, u(r) = b. \end{equation*} We prove interior regularity of solutions and we obtain a precise description of their boundary behaviour. This is achieved by a direct and elementary approach that exploits the properties of the zero set of the right-hand side $f$ of the equation.
Citation: Franco Obersnel, Pierpaolo Omari. Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 305-320. doi: 10.3934/dcds.2013.33.305
References:
[1]

G. Anzellotti, The Euler equation for functionals with linear growth,, Trans. Amer. Math. Soc., 290 (1985), 483.  doi: 10.1090/S0002-9947-1985-0792808-4.  Google Scholar

[2]

D. Bonheure, F. Obersnel and P. Omari, Heteroclinic solutions of the prescribed curvature equation with a double-well potential,, preprint, (2011).   Google Scholar

[3]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation,, J. Differential Equations, 243 (2007), 208.  doi: 10.1016/j.jde.2007.05.031.  Google Scholar

[4]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities,, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 63.   Google Scholar

[5]

G. Buttazzo, M. Giaquinta and S. Hildebrandt, "One-dimensional Variational Problems. An Introduction,'', Clarendon Press, (1998).   Google Scholar

[6]

K. C. Chang, The spectrum of the 1-Laplace operator,, Commun. Contemp. Math., 11 (2009), 865.  doi: 10.1142/S0219199709003570.  Google Scholar

[7]

M. Emmer, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari,, Ann. Univ. Ferrara Sez. VII (N.S.), 18 (1973), 79.   Google Scholar

[8]

C. Gerhardt, Existence and regularity of capillary surfaces,, Boll. Un. Mat. Ital. (4), 10 (1974), 317.   Google Scholar

[9]

C. Gerhardt, Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature,, Math. Z., 139 (1974), 173.  doi: 10.1007/BF01418314.  Google Scholar

[10]

M. Giaquinta, Regolarità delle superfici $BV$ con curvatura media assegnata,, Boll. Un. Mat. Ital. (4), 8 (1973), 567.   Google Scholar

[11]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variations,", Birkhäuser, (1984).   Google Scholar

[12]

P. Habets and P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem,, Commun. Contemp. Math., 9 (2007), 701.  doi: 10.1142/S0219199707002617.  Google Scholar

[13]

A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen,, Acta Math., 54 (1930), 117.  doi: 10.1007/BF02547519.  Google Scholar

[14]

V. K. Le, Some existence results on non-trivial solutions of the prescribed mean curvature equation,, Adv. Nonlinear Stud., 5 (2005), 133.   Google Scholar

[15]

V. K. Le, Variational method based on finite dimensional approximation in a generalized prescribed mean curvature problem,, J. Differential Equations, 246 (2009), 3559.  doi: 10.1016/j.jde.2008.11.015.  Google Scholar

[16]

U. Massari, Esistenza e regolarità delle ipersuperficie di curvatura media assegnata in $\RR^n$,, Arch. Rational Mech. Anal., 55 (1974), 357.  doi: 10.1007/BF00250439.  Google Scholar

[17]

J. Mawhin, J. R. Ward Jr. and M. Willem, Variational methods and semilinear elliptic equations,, Arch. Rational Mech. Anal., 95 (1986), 269.  doi: 10.1007/BF00251362.  Google Scholar

[18]

A. Mellet and J. Vovelle, Existence and regularity of extremal solutions for a mean-curvature equation,, J. Differential Equations, 249 (2010), 37.  doi: 10.1016/j.jde.2010.03.026.  Google Scholar

[19]

M. Miranda, Dirichlet problem with L 1 data for the non-homogeneous minimal surface equation,, Indiana Univ. Math. J., 24 (): 227.  doi: 10.1512/iumj.1974.24.24020.  Google Scholar

[20]

F. Obersnel, Classical and non-classical sign changing solutions of a one-dimensional autonomous prescribed curvature equation,, Adv. Nonlinear Stud., 7 (2007), 1.   Google Scholar

[21]

F. Obersnel and P. Omari, Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions,, Differential Integral Equations, 22 (2009), 853.   Google Scholar

[22]

F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation,, J. Differential Equations, 249 (2010), 1674.  doi: 10.1016/j.jde.2010.07.001.  Google Scholar

[23]

F. Obersnel, P. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions,, Nonlinear Anal. Real World Appl., 13 (2012), 2830.  doi: 10.1016/j.nonrwa.2012.04.012.  Google Scholar

[24]

L. Schwartz, Les théorèmes de Whitney sur les fonctions différentiables,, Séminaire Bourbaki, 1 (1995), 355.   Google Scholar

[25]

J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables,, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413.  doi: 10.1098/rsta.1969.0033.  Google Scholar

show all references

References:
[1]

G. Anzellotti, The Euler equation for functionals with linear growth,, Trans. Amer. Math. Soc., 290 (1985), 483.  doi: 10.1090/S0002-9947-1985-0792808-4.  Google Scholar

[2]

D. Bonheure, F. Obersnel and P. Omari, Heteroclinic solutions of the prescribed curvature equation with a double-well potential,, preprint, (2011).   Google Scholar

[3]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation,, J. Differential Equations, 243 (2007), 208.  doi: 10.1016/j.jde.2007.05.031.  Google Scholar

[4]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities,, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 63.   Google Scholar

[5]

G. Buttazzo, M. Giaquinta and S. Hildebrandt, "One-dimensional Variational Problems. An Introduction,'', Clarendon Press, (1998).   Google Scholar

[6]

K. C. Chang, The spectrum of the 1-Laplace operator,, Commun. Contemp. Math., 11 (2009), 865.  doi: 10.1142/S0219199709003570.  Google Scholar

[7]

M. Emmer, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari,, Ann. Univ. Ferrara Sez. VII (N.S.), 18 (1973), 79.   Google Scholar

[8]

C. Gerhardt, Existence and regularity of capillary surfaces,, Boll. Un. Mat. Ital. (4), 10 (1974), 317.   Google Scholar

[9]

C. Gerhardt, Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature,, Math. Z., 139 (1974), 173.  doi: 10.1007/BF01418314.  Google Scholar

[10]

M. Giaquinta, Regolarità delle superfici $BV$ con curvatura media assegnata,, Boll. Un. Mat. Ital. (4), 8 (1973), 567.   Google Scholar

[11]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variations,", Birkhäuser, (1984).   Google Scholar

[12]

P. Habets and P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem,, Commun. Contemp. Math., 9 (2007), 701.  doi: 10.1142/S0219199707002617.  Google Scholar

[13]

A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen,, Acta Math., 54 (1930), 117.  doi: 10.1007/BF02547519.  Google Scholar

[14]

V. K. Le, Some existence results on non-trivial solutions of the prescribed mean curvature equation,, Adv. Nonlinear Stud., 5 (2005), 133.   Google Scholar

[15]

V. K. Le, Variational method based on finite dimensional approximation in a generalized prescribed mean curvature problem,, J. Differential Equations, 246 (2009), 3559.  doi: 10.1016/j.jde.2008.11.015.  Google Scholar

[16]

U. Massari, Esistenza e regolarità delle ipersuperficie di curvatura media assegnata in $\RR^n$,, Arch. Rational Mech. Anal., 55 (1974), 357.  doi: 10.1007/BF00250439.  Google Scholar

[17]

J. Mawhin, J. R. Ward Jr. and M. Willem, Variational methods and semilinear elliptic equations,, Arch. Rational Mech. Anal., 95 (1986), 269.  doi: 10.1007/BF00251362.  Google Scholar

[18]

A. Mellet and J. Vovelle, Existence and regularity of extremal solutions for a mean-curvature equation,, J. Differential Equations, 249 (2010), 37.  doi: 10.1016/j.jde.2010.03.026.  Google Scholar

[19]

M. Miranda, Dirichlet problem with L 1 data for the non-homogeneous minimal surface equation,, Indiana Univ. Math. J., 24 (): 227.  doi: 10.1512/iumj.1974.24.24020.  Google Scholar

[20]

F. Obersnel, Classical and non-classical sign changing solutions of a one-dimensional autonomous prescribed curvature equation,, Adv. Nonlinear Stud., 7 (2007), 1.   Google Scholar

[21]

F. Obersnel and P. Omari, Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions,, Differential Integral Equations, 22 (2009), 853.   Google Scholar

[22]

F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation,, J. Differential Equations, 249 (2010), 1674.  doi: 10.1016/j.jde.2010.07.001.  Google Scholar

[23]

F. Obersnel, P. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions,, Nonlinear Anal. Real World Appl., 13 (2012), 2830.  doi: 10.1016/j.nonrwa.2012.04.012.  Google Scholar

[24]

L. Schwartz, Les théorèmes de Whitney sur les fonctions différentiables,, Séminaire Bourbaki, 1 (1995), 355.   Google Scholar

[25]

J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables,, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413.  doi: 10.1098/rsta.1969.0033.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]