Citation: |
[1] |
G. Anzellotti, The Euler equation for functionals with linear growth, Trans. Amer. Math. Soc., 290 (1985), 483-501.doi: 10.1090/S0002-9947-1985-0792808-4. |
[2] |
D. Bonheure, F. Obersnel and P. Omari, Heteroclinic solutions of the prescribed curvature equation with a double-well potential, preprint, (2011). |
[3] |
D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations, 243 (2007), 208-237.doi: 10.1016/j.jde.2007.05.031. |
[4] |
D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 63-85. |
[5] |
G. Buttazzo, M. Giaquinta and S. Hildebrandt, "One-dimensional Variational Problems. An Introduction,'' Clarendon Press, Oxford, 1998. |
[6] |
K. C. Chang, The spectrum of the 1-Laplace operator, Commun. Contemp. Math., 11 (2009), 865-894.doi: 10.1142/S0219199709003570. |
[7] |
M. Emmer, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari, Ann. Univ. Ferrara Sez. VII (N.S.), 18 (1973), 79-94. |
[8] |
C. Gerhardt, Existence and regularity of capillary surfaces, Boll. Un. Mat. Ital. (4), 10 (1974), 317-335. |
[9] |
C. Gerhardt, Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature, Math. Z., 139 (1974), 173-198.doi: 10.1007/BF01418314. |
[10] |
M. Giaquinta, Regolarità delle superfici $BV$ con curvatura media assegnata, Boll. Un. Mat. Ital. (4), 8 (1973), 567-578. |
[11] |
E. Giusti, "Minimal Surfaces and Functions of Bounded Variations," Birkhäuser, Basel, 1984. |
[12] |
P. Habets and P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Commun. Contemp. Math., 9 (2007), 701-730.doi: 10.1142/S0219199707002617. |
[13] |
A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math., 54 (1930), 117-176.doi: 10.1007/BF02547519. |
[14] |
V. K. Le, Some existence results on non-trivial solutions of the prescribed mean curvature equation, Adv. Nonlinear Stud., 5 (2005), 133-161. |
[15] |
V. K. Le, Variational method based on finite dimensional approximation in a generalized prescribed mean curvature problem, J. Differential Equations, 246 (2009), 3559-3578.doi: 10.1016/j.jde.2008.11.015. |
[16] |
U. Massari, Esistenza e regolarità delle ipersuperficie di curvatura media assegnata in $\RR^n$, Arch. Rational Mech. Anal., 55 (1974), 357-382.doi: 10.1007/BF00250439. |
[17] |
J. Mawhin, J. R. Ward Jr. and M. Willem, Variational methods and semilinear elliptic equations, Arch. Rational Mech. Anal., 95 (1986), 269-277.doi: 10.1007/BF00251362. |
[18] |
A. Mellet and J. Vovelle, Existence and regularity of extremal solutions for a mean-curvature equation, J. Differential Equations, 249 (2010), 37-75.doi: 10.1016/j.jde.2010.03.026. |
[19] |
M. Miranda, Dirichlet problem with L 1 data for the non-homogeneous minimal surface equation, Indiana Univ. Math. J., 24 (1974/75), 227-241. doi: 10.1512/iumj.1974.24.24020. |
[20] |
F. Obersnel, Classical and non-classical sign changing solutions of a one-dimensional autonomous prescribed curvature equation, Adv. Nonlinear Stud., 7 (2007), 1-13. |
[21] |
F. Obersnel and P. Omari, Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions, Differential Integral Equations, 22 (2009), 853-880. |
[22] |
F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, J. Differential Equations, 249 (2010), 1674-1725.doi: 10.1016/j.jde.2010.07.001. |
[23] |
F. Obersnel, P. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal. Real World Appl., 13 (2012), 2830-2852.doi: 10.1016/j.nonrwa.2012.04.012. |
[24] |
L. Schwartz, Les théorèmes de Whitney sur les fonctions différentiables, Séminaire Bourbaki, Soc. Math. France, Paris, 1 (1995), 355-363. |
[25] |
J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413-496.doi: 10.1098/rsta.1969.0033. |