July  2013, 33(7): 3085-3108. doi: 10.3934/dcds.2013.33.3085

Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems

1. 

School of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350007

2. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234

Received  January 2012 Revised  November 2012 Published  January 2013

This paper is concerned with bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. By analyzing the multiplicities of the zeroes of the slow divergence integrals and their complete unfolding, the upper bounds of canard limit cycles bifurcating from the suitable limit periodic sets through respectively the generic Hopf breaking mechanism, the generic jump breaking mechanism and a succession of the Hopf and jump mechanisms in these polynomial Liénard systems are obtained.
Citation: Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3085-3108. doi: 10.3934/dcds.2013.33.3085
References:
[1]

P. De, Maesschalck and F. Dumortier, Classical Liénard equations of degess $n\geq6$ can have $[\frac{n-1}{2}]+2$ limit cycles,, J. Differential Equations, 250 (2011), 2162.  doi: 10.1016/j.jde.2010.12.003.  Google Scholar

[2]

P. De, Maesschalck and F. Dumortier, Bifurcations of multiple relaxation oscillations in polynomial Liénard equations,, Proc. Amer. Math. Soc., 139 (2011), 2073.  doi: 10.1090/S0002-9939-2010-10610-X.  Google Scholar

[3]

F. Dumortier, Slow divergence integral and balanced canard solutions,, Qual. Theory Dyn. Syst., 10 (2011), 65.  doi: 10.1007/s12346-011-0038-9.  Google Scholar

[4]

F. Dumortier, D. Panazzolo and R. Roussarie, More limit cycles than expected in Liénard equations,, Proc. Amer. Math. Soc., 135 (2007), 1895.  doi: 10.1090/S0002-9939-07-08688-1.  Google Scholar

[5]

F. Dumortier and R. Roussarie, Multiple canard cycles in generalized Liénard equations,, J. Differential Equations, 174 (2001), 1.  doi: 10.1006/jdeq.2000.3947.  Google Scholar

[6]

F. Dumortier and R. Roussarie, Bifurcation of relaxation oscillations in dimension two,, Discrete Contin. Dyn. Syst., 19 (2007), 631.  doi: 10.3934/dcds.2007.19.631.  Google Scholar

[7]

F. Dumortier and R. Roussarie, Canard cycles with two breaking parameters,, Discrete Contin. Dyn. Syst., 17 (2007), 787.  doi: 10.3934/dcds.2007.17.787.  Google Scholar

[8]

F. Dumortier and R. Roussarie, Multi-layer canard cycles and translated power functions,, J. Differential Equations, 244 (2008), 1329.  doi: 10.1016/j.jde.2007.08.013.  Google Scholar

[9]

M. Golubitsky and V. Guillemin, "Stable Mappings and Their Singularities,", in: Graduate Texts in Math., (1973).   Google Scholar

[10]

M. Han, P. Bi and D. Xiao, Bifurcation of limit cycles and separatrix loops in singular Liénard systems,, Chaos Solitons Fractals, 20 (2004), 529.  doi: 10.1016/S0960-0779(03)00412-0.  Google Scholar

[11]

C. Li and J. Llibre, Uniqueness of limit cycles for Liénard equations of degree four,, J. Differential Equations, 252 (2012), 3142.  doi: 10.1016/j.jde.2011.11.002.  Google Scholar

[12]

A. Lins, W. de Melo and C.C. Pugh, On Liénard's equations,, in, (1977), 335.   Google Scholar

[13]

J. Llibre, A survey on the limit cycles of the generalized polynomial Liénard differential equations,, in, (2008), 224.   Google Scholar

[14]

L. Mamouhdi and R. Roussarie, Canard cycles of finite codimension with two breaking parameters,, Qual. Theory Dyn. Syst., 11 (2012), 167.  doi: 10.1007/s12346-011-0061-x.  Google Scholar

[15]

R. Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441.  doi: 10.3934/dcds.2007.17.441.  Google Scholar

[16]

Y. Tian and M. Han, Hopf bifurcation for two types of Liénard systems,, J. Differential Equations, 251 (2011), 834.  doi: 10.1016/j.jde.2011.05.029.  Google Scholar

[17]

J. Wang and D. Xiao, On the number of the limit cycles in small perturbation of a class of hyper-ellipic Hamiltonian systems with one nilponent saddle,, J. Differential Equations, 250 (2011), 2227.  doi: 10.1016/j.jde.2010.11.004.  Google Scholar

[18]

Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equations,", Science Publisher, (1985).   Google Scholar

show all references

References:
[1]

P. De, Maesschalck and F. Dumortier, Classical Liénard equations of degess $n\geq6$ can have $[\frac{n-1}{2}]+2$ limit cycles,, J. Differential Equations, 250 (2011), 2162.  doi: 10.1016/j.jde.2010.12.003.  Google Scholar

[2]

P. De, Maesschalck and F. Dumortier, Bifurcations of multiple relaxation oscillations in polynomial Liénard equations,, Proc. Amer. Math. Soc., 139 (2011), 2073.  doi: 10.1090/S0002-9939-2010-10610-X.  Google Scholar

[3]

F. Dumortier, Slow divergence integral and balanced canard solutions,, Qual. Theory Dyn. Syst., 10 (2011), 65.  doi: 10.1007/s12346-011-0038-9.  Google Scholar

[4]

F. Dumortier, D. Panazzolo and R. Roussarie, More limit cycles than expected in Liénard equations,, Proc. Amer. Math. Soc., 135 (2007), 1895.  doi: 10.1090/S0002-9939-07-08688-1.  Google Scholar

[5]

F. Dumortier and R. Roussarie, Multiple canard cycles in generalized Liénard equations,, J. Differential Equations, 174 (2001), 1.  doi: 10.1006/jdeq.2000.3947.  Google Scholar

[6]

F. Dumortier and R. Roussarie, Bifurcation of relaxation oscillations in dimension two,, Discrete Contin. Dyn. Syst., 19 (2007), 631.  doi: 10.3934/dcds.2007.19.631.  Google Scholar

[7]

F. Dumortier and R. Roussarie, Canard cycles with two breaking parameters,, Discrete Contin. Dyn. Syst., 17 (2007), 787.  doi: 10.3934/dcds.2007.17.787.  Google Scholar

[8]

F. Dumortier and R. Roussarie, Multi-layer canard cycles and translated power functions,, J. Differential Equations, 244 (2008), 1329.  doi: 10.1016/j.jde.2007.08.013.  Google Scholar

[9]

M. Golubitsky and V. Guillemin, "Stable Mappings and Their Singularities,", in: Graduate Texts in Math., (1973).   Google Scholar

[10]

M. Han, P. Bi and D. Xiao, Bifurcation of limit cycles and separatrix loops in singular Liénard systems,, Chaos Solitons Fractals, 20 (2004), 529.  doi: 10.1016/S0960-0779(03)00412-0.  Google Scholar

[11]

C. Li and J. Llibre, Uniqueness of limit cycles for Liénard equations of degree four,, J. Differential Equations, 252 (2012), 3142.  doi: 10.1016/j.jde.2011.11.002.  Google Scholar

[12]

A. Lins, W. de Melo and C.C. Pugh, On Liénard's equations,, in, (1977), 335.   Google Scholar

[13]

J. Llibre, A survey on the limit cycles of the generalized polynomial Liénard differential equations,, in, (2008), 224.   Google Scholar

[14]

L. Mamouhdi and R. Roussarie, Canard cycles of finite codimension with two breaking parameters,, Qual. Theory Dyn. Syst., 11 (2012), 167.  doi: 10.1007/s12346-011-0061-x.  Google Scholar

[15]

R. Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441.  doi: 10.3934/dcds.2007.17.441.  Google Scholar

[16]

Y. Tian and M. Han, Hopf bifurcation for two types of Liénard systems,, J. Differential Equations, 251 (2011), 834.  doi: 10.1016/j.jde.2011.05.029.  Google Scholar

[17]

J. Wang and D. Xiao, On the number of the limit cycles in small perturbation of a class of hyper-ellipic Hamiltonian systems with one nilponent saddle,, J. Differential Equations, 250 (2011), 2227.  doi: 10.1016/j.jde.2010.11.004.  Google Scholar

[18]

Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equations,", Science Publisher, (1985).   Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[3]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[4]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[7]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[8]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[11]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[12]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[13]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[14]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[15]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[16]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[20]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]