July  2013, 33(7): 3109-3134. doi: 10.3934/dcds.2013.33.3109

On the stability of periodic orbits in delay equations with large delay

1. 

Harrison Building, North Park Road, CEMPS, University of Exeter, Exeter, EX4 4QF, United Kingdom

2. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

3. 

Institute of Mathematics, Humboldt University of Berlin, Rudower Chaussee 25, 12489, Berlin

Received  February 2012 Revised  December 2012 Published  January 2013

We prove a necessary and sufficient criterion for the exponential stability of periodic solutions of delay differential equations with large delay. We show that for sufficiently large delay the Floquet spectrum near criticality is characterized by a set of curves, which we call asymptotic continuous spectrum, that is independent on the delay.
Citation: Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109
References:
[1]

K. Engelborghs, T. Luzyanina and G. Samaey, "DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations,", Report TW 330, (2001).   Google Scholar

[2]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", 99 of Applied Mathematical Sciences. Springer-Verlag, 99 (1993).   Google Scholar

[3]

M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems,, Trans. Amer. Math. Soc., 334 (1992), 479.  doi: 10.2307/2154470.  Google Scholar

[4]

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection properties,, IEEE J. of Quant. El., 16 (1980), 347.   Google Scholar

[5]

M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay,, SIAM J. Math. Anal., 43 (2011), 788.  doi: 10.1137/090766796.  Google Scholar

[6]

J. J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi, "Topics in Time Delay Systems: Analysis, Algorithms and Control,", 388 of Lecture Notes in Control and Information Sciences. Springer, 388 (2009).  doi: 10.1007/978-3-642-02897-7.  Google Scholar

[7]

D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations,, in, (2007), 51.  doi: 10.1007/978-1-4020-6356-5_12.  Google Scholar

[8]

G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations,, Numer. Algorithms, 30 (2002), 335.  doi: 10.1023/A:1020102317544.  Google Scholar

[9]

E. Schöll and H. Schuster, "Handbook of Chaos Control,", Wiley, (2008).   Google Scholar

[10]

J. Sieber and R. Szalai, Characteristic matrices for linear periodic delay differential equations,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 129.  doi: 10.1137/100796455.  Google Scholar

[11]

A. L. Skubachevskii and H.-O. Walther, On the Floquet multipliers of periodic solutions to nonlinear functional differential equations,, J. Dynam. Diff. Eq., 18 (2006), 257.  doi: 10.1007/s10884-006-9006-5.  Google Scholar

[12]

G. Stépán, "Retarded Dynamical Systems: Stability and Characteristic Functions,", Longman Scientific and Technical, (1989).   Google Scholar

[13]

R. Szalai, G. Stépán and S. J. Hogan, Continuation of bifurcations in periodic delay differential equations using characteristic matrices,, SIAM Journal on Scientific Computing, 28 (2006), 1301.  doi: 10.1137/040618709.  Google Scholar

[14]

H.-O. Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$,, Journal of Mathematical Analysis and Applications, 79 (1981), 127.  doi: 10.1016/0022-247X(81)90014-7.  Google Scholar

[15]

M Wolfrum and S Yanchuk, Eckhaus instability in systems with large delay,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.220201.  Google Scholar

[16]

S Yanchuk and P Perlikowski, Delay and periodicity,, Physical Review E., 79 (2009).  doi: 10.1103/PhysRevE.79.046221.  Google Scholar

[17]

S Yanchuk and M Wolfrum, Stability of external cavity modes in the Lang-Kobayashi system with large delay,, SIAM J. Appl. Dyn. Sys., 9 (2010), 519.  doi: 10.1137/090751335.  Google Scholar

show all references

References:
[1]

K. Engelborghs, T. Luzyanina and G. Samaey, "DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations,", Report TW 330, (2001).   Google Scholar

[2]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", 99 of Applied Mathematical Sciences. Springer-Verlag, 99 (1993).   Google Scholar

[3]

M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems,, Trans. Amer. Math. Soc., 334 (1992), 479.  doi: 10.2307/2154470.  Google Scholar

[4]

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection properties,, IEEE J. of Quant. El., 16 (1980), 347.   Google Scholar

[5]

M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay,, SIAM J. Math. Anal., 43 (2011), 788.  doi: 10.1137/090766796.  Google Scholar

[6]

J. J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi, "Topics in Time Delay Systems: Analysis, Algorithms and Control,", 388 of Lecture Notes in Control and Information Sciences. Springer, 388 (2009).  doi: 10.1007/978-3-642-02897-7.  Google Scholar

[7]

D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations,, in, (2007), 51.  doi: 10.1007/978-1-4020-6356-5_12.  Google Scholar

[8]

G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations,, Numer. Algorithms, 30 (2002), 335.  doi: 10.1023/A:1020102317544.  Google Scholar

[9]

E. Schöll and H. Schuster, "Handbook of Chaos Control,", Wiley, (2008).   Google Scholar

[10]

J. Sieber and R. Szalai, Characteristic matrices for linear periodic delay differential equations,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 129.  doi: 10.1137/100796455.  Google Scholar

[11]

A. L. Skubachevskii and H.-O. Walther, On the Floquet multipliers of periodic solutions to nonlinear functional differential equations,, J. Dynam. Diff. Eq., 18 (2006), 257.  doi: 10.1007/s10884-006-9006-5.  Google Scholar

[12]

G. Stépán, "Retarded Dynamical Systems: Stability and Characteristic Functions,", Longman Scientific and Technical, (1989).   Google Scholar

[13]

R. Szalai, G. Stépán and S. J. Hogan, Continuation of bifurcations in periodic delay differential equations using characteristic matrices,, SIAM Journal on Scientific Computing, 28 (2006), 1301.  doi: 10.1137/040618709.  Google Scholar

[14]

H.-O. Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$,, Journal of Mathematical Analysis and Applications, 79 (1981), 127.  doi: 10.1016/0022-247X(81)90014-7.  Google Scholar

[15]

M Wolfrum and S Yanchuk, Eckhaus instability in systems with large delay,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.220201.  Google Scholar

[16]

S Yanchuk and P Perlikowski, Delay and periodicity,, Physical Review E., 79 (2009).  doi: 10.1103/PhysRevE.79.046221.  Google Scholar

[17]

S Yanchuk and M Wolfrum, Stability of external cavity modes in the Lang-Kobayashi system with large delay,, SIAM J. Appl. Dyn. Sys., 9 (2010), 519.  doi: 10.1137/090751335.  Google Scholar

[1]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[2]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[3]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[9]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[12]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[13]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[16]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[17]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[18]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[19]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (18)

[Back to Top]