July  2013, 33(7): 3153-3170. doi: 10.3934/dcds.2013.33.3153

Harnack's inequality for fractional nonlocal equations

1. 

Department of Mathematics, The University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712-1202, United States

2. 

Department of Mathematics, Sun Yat-sen (Zhongshan) University, 510275 Guangzhou, China

Received  March 2012 Revised  June 2012 Published  January 2013

We prove interior Harnack's inequalities for solutions of fractional nonlocal equations. Our examples include fractional powers of divergence form elliptic operators with potentials, operators arising in classical orthogonal expansions and the radial Laplacian. To get the results we use an analytic method based on a generalization of the Caffarelli--Silvestre extension problem, the Harnack's inequality for degenerate Schrödinger operators proved by C. E. Gutiérrez, and a transference method. In this manner we apply local PDE techniques to nonlocal operators. On the way a maximum principle and a Liouville theorem for some fractional nonlocal equations are obtained.
Citation: Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153
References:
[1]

I. Abu-Falahah, R. A. Macías, C. Segovia and J. L. Torrea, Transferring strong boundedness among Laguerre orthogonal systems, Proc. Indian Acad. Sci. Math. Sci., 119 (2009), 203-220. doi: 10.1007/s12044-009-0021-4.  Google Scholar

[2]

I. Abu-Falahah and J. L. Torrea, Hermite function expansions versus Hermite polynomial expansions, Glasgow Math. J., 48 (2006), 203-215. doi: 10.1017/S0017089506003004.  Google Scholar

[3]

J. J. Betancor, J. Dziubański and J. L. Torrea, On Hardy spaces associated with Bessel operators, J. Anal. Math., 107 (2009), 195-219. doi: 10.1007/s11854-009-0008-1.  Google Scholar

[4]

S. Bochner, Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions, in "Proceedings of the Conference on Differential Equations (dedicated to A. Weinstein)", University of Maryland Book Store, College Park, Md., (1956), 23-48.  Google Scholar

[5]

L. Caffarelli, Some nonlinear problems involving non-local diffusions, in "ICIAM 07-6th International Congress on Industrial and Applied Mathematics," Eur. Math. Soc., Zürich, (2009), 43-56. doi: 10.4171/056-1/3.  Google Scholar

[6]

L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[8]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903.  Google Scholar

[9]

E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Tracts in Mathematics 92, Cambridge Univ. Press, Cambridge, 1989. doi: 10.1017/CBO9780511566158.  Google Scholar

[10]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions to degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. doi: 10.1080/03605308208820218.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[12]

C. E. Gutiérrez, Harnack's inequality for degenerate Schrödinger operators, Trans. Amer. Math. Soc., 312 (1989), 403-419. doi: 10.2307/2001222.  Google Scholar

[13]

C. E. Gutiérrez, On the Riesz transforms for Gaussian measures, J. Funct. Anal., 120 (1994), 107-134. doi: 10.1006/jfan.1994.1026.  Google Scholar

[14]

C. E. Gutiérrez, A. Incognito and J. L. Torrea, Riesz transforms, $g$-functions, and multipliers for the Laguerre semigroup, Houston J. Math., 27 (2001), 579-592.  Google Scholar

[15]

T. Lin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, preprint (2011), 59 pp, Google Scholar

[16]

N. S. Landkof, "Foundations of Modern Potential Theory," Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[17]

N. N. Lebedev, "Special Functions and Their Applications," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.  Google Scholar

[18]

B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17-92.  Google Scholar

[19]

L. Roncal and P. R. Stinga, Fractional Laplacian on the torus, preprint (2012), 16 pp, Google Scholar

[20]

W. Rudin, "Functional Analysis," McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.  Google Scholar

[21]

M. F. Shlesinger, G. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 363 (1993), 31-37. Google Scholar

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar

[23]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.  Google Scholar

[24]

G. Szegö, "Orthogonal Polynomials," Fourth edition, American Mathematical Society Colloquium Publications XXIII, American Mathematical Society, Providence, R.I., 1975.  Google Scholar

[25]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983. doi: 10.3934/dcds.2011.31.975.  Google Scholar

[26]

S. Thangavelu, "Lectures on Hermite and Laguerre Expansions," Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993.  Google Scholar

[27]

E. C. Titchmarsh, "Intoduction to the Theory of Fourier Integrals," Third edition, Chelsea Publishing Co., New York, 1986.  Google Scholar

[28]

N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (3), 27 (1973), 265-308.  Google Scholar

[29]

K. Yosida, "Functional Analysis," Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

show all references

References:
[1]

I. Abu-Falahah, R. A. Macías, C. Segovia and J. L. Torrea, Transferring strong boundedness among Laguerre orthogonal systems, Proc. Indian Acad. Sci. Math. Sci., 119 (2009), 203-220. doi: 10.1007/s12044-009-0021-4.  Google Scholar

[2]

I. Abu-Falahah and J. L. Torrea, Hermite function expansions versus Hermite polynomial expansions, Glasgow Math. J., 48 (2006), 203-215. doi: 10.1017/S0017089506003004.  Google Scholar

[3]

J. J. Betancor, J. Dziubański and J. L. Torrea, On Hardy spaces associated with Bessel operators, J. Anal. Math., 107 (2009), 195-219. doi: 10.1007/s11854-009-0008-1.  Google Scholar

[4]

S. Bochner, Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions, in "Proceedings of the Conference on Differential Equations (dedicated to A. Weinstein)", University of Maryland Book Store, College Park, Md., (1956), 23-48.  Google Scholar

[5]

L. Caffarelli, Some nonlinear problems involving non-local diffusions, in "ICIAM 07-6th International Congress on Industrial and Applied Mathematics," Eur. Math. Soc., Zürich, (2009), 43-56. doi: 10.4171/056-1/3.  Google Scholar

[6]

L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[8]

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903.  Google Scholar

[9]

E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Tracts in Mathematics 92, Cambridge Univ. Press, Cambridge, 1989. doi: 10.1017/CBO9780511566158.  Google Scholar

[10]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions to degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. doi: 10.1080/03605308208820218.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[12]

C. E. Gutiérrez, Harnack's inequality for degenerate Schrödinger operators, Trans. Amer. Math. Soc., 312 (1989), 403-419. doi: 10.2307/2001222.  Google Scholar

[13]

C. E. Gutiérrez, On the Riesz transforms for Gaussian measures, J. Funct. Anal., 120 (1994), 107-134. doi: 10.1006/jfan.1994.1026.  Google Scholar

[14]

C. E. Gutiérrez, A. Incognito and J. L. Torrea, Riesz transforms, $g$-functions, and multipliers for the Laguerre semigroup, Houston J. Math., 27 (2001), 579-592.  Google Scholar

[15]

T. Lin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, preprint (2011), 59 pp, Google Scholar

[16]

N. S. Landkof, "Foundations of Modern Potential Theory," Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[17]

N. N. Lebedev, "Special Functions and Their Applications," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.  Google Scholar

[18]

B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17-92.  Google Scholar

[19]

L. Roncal and P. R. Stinga, Fractional Laplacian on the torus, preprint (2012), 16 pp, Google Scholar

[20]

W. Rudin, "Functional Analysis," McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.  Google Scholar

[21]

M. F. Shlesinger, G. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 363 (1993), 31-37. Google Scholar

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.  Google Scholar

[23]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.  Google Scholar

[24]

G. Szegö, "Orthogonal Polynomials," Fourth edition, American Mathematical Society Colloquium Publications XXIII, American Mathematical Society, Providence, R.I., 1975.  Google Scholar

[25]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983. doi: 10.3934/dcds.2011.31.975.  Google Scholar

[26]

S. Thangavelu, "Lectures on Hermite and Laguerre Expansions," Mathematical Notes 42, Princeton University Press, Princeton, NJ, 1993.  Google Scholar

[27]

E. C. Titchmarsh, "Intoduction to the Theory of Fourier Integrals," Third edition, Chelsea Publishing Co., New York, 1986.  Google Scholar

[28]

N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (3), 27 (1973), 265-308.  Google Scholar

[29]

K. Yosida, "Functional Analysis," Classics in Mathematics, Springer-Verlag, Berlin, 1995.  Google Scholar

[1]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[2]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[3]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[4]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[5]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[6]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016

[7]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[8]

Yutian Lei. Liouville theorems and classification results for a nonlocal Schrödinger equation. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5351-5377. doi: 10.3934/dcds.2018236

[9]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[10]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[11]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3821-3836. doi: 10.3934/dcdss.2020436

[13]

Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025

[14]

Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021187

[15]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2021, 11 (4) : 965-985. doi: 10.3934/mcrf.2020054

[16]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[17]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[18]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[19]

Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933

[20]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (276)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]