July  2013, 33(7): 3171-3188. doi: 10.3934/dcds.2013.33.3171

Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation

1. 

Department of Mathematics, Pennsylvania State University, State College, PA, 16802, United States

2. 

Department of Applied Mathematics, University of Washington, Campus Box 352420, Seattle, WA 98195

Received  March 2012 Revised  August 2012 Published  January 2013

A new method due to Fokas for explicitly solving boundary-value problems for linear partial differential equations is extended to equations with mixed partial derivatives. The Benjamin-Bona-Mahony equation is used as an example: we consider the Robin problem for this equation posed both on the half line and on the finite interval. For specific cases of the Robin boundary conditions the boundary-value problem is found to be ill posed.
Citation: Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171
References:
[1]

A. S. Fokas, "A Unified Approach to Boundary Value Problems,", SIAM: CBMS-NSF Regional Conference Series in Applied Mathematics, (2008).  doi: 10.1137/1.9780898717068.  Google Scholar

[2]

B. Deconinck, T. Trogdon and V. Vasan, The method of Fokas for solving linear partial differential equations,, Accepted for publication (SIAM Review), (2012), 1.   Google Scholar

[3]

A. S. Fokas, Boundary-value problems for linear PDEs with variable coefficients,, Proc. R. Soc. Lond, 460 (2004), 1131.  doi: 10.1098/rspa.2003.1208.  Google Scholar

[4]

P. A. Treharne and A. S. Fokas, Initial-boundary value problems for linear PDEs with variable coefficients,, Math. Proc. Camb. Phil. Soc., 143 (2007), 221.  doi: 10.1017/S0305004107000084.  Google Scholar

[5]

P. A. Treharne and A. S. Fokas, Boundary value problems for systems of linear evolution equations,, IMA J. Applied Math., 69 (2004), 539.  doi: 10.1093/imamat/69.6.539.  Google Scholar

[6]

A. S. Fokas and B. Pelloni, Generalized Dirichlet to Neumann Map for moving boundary value problems,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2405405.  Google Scholar

[7]

K. Kalimeris and A. S. Fokas, The heat equation in the interior of an equilateral triangle,, Studies in Applied Math., 124 (2010), 283.  doi: 10.1111/j.1467-9590.2009.00471.x.  Google Scholar

[8]

S. A. Smitheman, E. A. Spence and A. S. Fokas, A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon,, IMA J. Num. Anal., 30 (2010), 1184.  doi: 10.1093/imanum/drn079.  Google Scholar

[9]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Phil. Trans. Roy. Soc. London. Ser. A, 272 (1972), 47.   Google Scholar

[10]

A. S. Fokas, On a class of physically important integrable equations,, Physica D, 87 (1995), 145.  doi: 10.1016/0167-2789(95)00133-O.  Google Scholar

[11]

A. S. Fokas and B. Pelloni, Boundary value problems for Boussinesq type systems,, Math. Phys. Anal. Geom., 8 (2005), 59.  doi: 10.1007/s11040-004-1650-6.  Google Scholar

[12]

J. M.-K. Hong, J. Wu and J.-M. Yuan, A new solution representation for the BBM equation in a quarter plane and the eventual periodicity,, Nonlinearity, 22 (2009), 1927.  doi: 10.1088/0951-7715/22/8/009.  Google Scholar

[13]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems,, Proc. Camb. Phil. Soc., 73 (1973), 391.   Google Scholar

show all references

References:
[1]

A. S. Fokas, "A Unified Approach to Boundary Value Problems,", SIAM: CBMS-NSF Regional Conference Series in Applied Mathematics, (2008).  doi: 10.1137/1.9780898717068.  Google Scholar

[2]

B. Deconinck, T. Trogdon and V. Vasan, The method of Fokas for solving linear partial differential equations,, Accepted for publication (SIAM Review), (2012), 1.   Google Scholar

[3]

A. S. Fokas, Boundary-value problems for linear PDEs with variable coefficients,, Proc. R. Soc. Lond, 460 (2004), 1131.  doi: 10.1098/rspa.2003.1208.  Google Scholar

[4]

P. A. Treharne and A. S. Fokas, Initial-boundary value problems for linear PDEs with variable coefficients,, Math. Proc. Camb. Phil. Soc., 143 (2007), 221.  doi: 10.1017/S0305004107000084.  Google Scholar

[5]

P. A. Treharne and A. S. Fokas, Boundary value problems for systems of linear evolution equations,, IMA J. Applied Math., 69 (2004), 539.  doi: 10.1093/imamat/69.6.539.  Google Scholar

[6]

A. S. Fokas and B. Pelloni, Generalized Dirichlet to Neumann Map for moving boundary value problems,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2405405.  Google Scholar

[7]

K. Kalimeris and A. S. Fokas, The heat equation in the interior of an equilateral triangle,, Studies in Applied Math., 124 (2010), 283.  doi: 10.1111/j.1467-9590.2009.00471.x.  Google Scholar

[8]

S. A. Smitheman, E. A. Spence and A. S. Fokas, A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon,, IMA J. Num. Anal., 30 (2010), 1184.  doi: 10.1093/imanum/drn079.  Google Scholar

[9]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Phil. Trans. Roy. Soc. London. Ser. A, 272 (1972), 47.   Google Scholar

[10]

A. S. Fokas, On a class of physically important integrable equations,, Physica D, 87 (1995), 145.  doi: 10.1016/0167-2789(95)00133-O.  Google Scholar

[11]

A. S. Fokas and B. Pelloni, Boundary value problems for Boussinesq type systems,, Math. Phys. Anal. Geom., 8 (2005), 59.  doi: 10.1007/s11040-004-1650-6.  Google Scholar

[12]

J. M.-K. Hong, J. Wu and J.-M. Yuan, A new solution representation for the BBM equation in a quarter plane and the eventual periodicity,, Nonlinearity, 22 (2009), 1927.  doi: 10.1088/0951-7715/22/8/009.  Google Scholar

[13]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems,, Proc. Camb. Phil. Soc., 73 (1973), 391.   Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[3]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[7]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[8]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[9]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[10]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]