Citation: |
[1] |
J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equations with critical exponents, Comm. Partial Differential Equations, 17 (1992), 841-866.doi: 10.1080/03605309208820866. |
[2] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992. |
[3] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal., 72 (2010), 1967-1976.doi: 10.1016/j.na.2009.09.037. |
[4] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.doi: 10.1016/j.na.2005.03.111. |
[5] |
T. Caraballo, J. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst., 9 (2008), 525-539.doi: 10.3934/dcdsb.2008.9.525. |
[6] |
T. Caraballo, M. J. Garrido-Atienza and B. Schmalfß, Nonautonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.doi: 10.3934/dcds.2008.21.415. |
[7] |
T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513. |
[8] |
T. Caraballo, J. A. Langa and J. C. Robinson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Commun. Partial Diff. Eqns., 23 (1998), 1557-1581.doi: 10.1080/03605309808821394. |
[9] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.doi: 10.1016/j.na.2009.01.016. |
[10] |
A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and unstable manifolds, J. Differential Equations, 223 (2007), 622-653.doi: 10.1016/j.jde.2006.08.009. |
[11] |
I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equatins, 252 (2012), 1229-1262.doi: 10.1016/j.jde.2011.08.022. |
[12] |
I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with nonlinear boundary/interior damping, J. Differential Equations, 233 (2007), 42-86.doi: 10.1016/j.jde.2006.09.019. |
[13] |
I. Chueshov and I. Lasiecka, "Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping," Mem. Amer. Math. Soc., 195, 2008. |
[14] |
C. M. Elliot and I. N. Kostin, Lower semicontinuity of a nonhyperbolic attractor fro the viscous Cahn-Hilliard equation, Nonlinearity, 9 (1996), 678-702.doi: 10.1088/0951-7715/9/3/005. |
[15] |
F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21-45. |
[16] |
M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Meth. Appl. Sci., 22 (1999), 375-388.doi: 10.1002/(SICI)1099-1476(19990325)22:5<375::AID-MMA26>3.0.CO;2-7. |
[17] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems," AMS, Providence, RI, 1988. |
[18] |
J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.doi: 10.1016/0022-0396(88)90104-0. |
[19] |
J. K. Hale and G. Raugel, Lower semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Dynam. Diff. Eq., 2 (1990), 19-67.doi: 10.1007/BF01047769. |
[20] |
L. V. Kapitanski and I. N. Kostin, Attractors of nonlinear evolution equations and their approximations, Leningrad Math. J., 2 (1991), 97-117. |
[21] |
V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equation, 247 (2009), 1120-1155.doi: 10.1016/j.jde.2009.04.010. |
[22] |
A. Kh. Khanmamedov, Global attractors for wave equation with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.doi: 10.1016/j.jde.2006.06.001. |
[23] |
A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.doi: 10.1016/j.jmaa.2005.05.031. |
[24] |
G. Kirchhoff, "Vorlesungen über Mechanik," Teubner, Stuttgart, 1883. |
[25] |
P. E. Kloeden, P. Marín-Rubio and J. Real, Pullback attractors for a semilinear heat equation in a non-cylindrical domain, J. Differential Equations, 244 (2008), 2062-2090.doi: 10.1016/j.jde.2007.10.031. |
[26] |
P. E. Kloeden, J. Real and C. Y. Sun, Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Equations, 246 (2009), 4702-4730.doi: 10.1016/j.jde.2008.11.017. |
[27] |
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. Roy. Soc. London A, 463 (2007), 163-181.doi: 10.1098/rspa.2006.1753. |
[28] |
S. Kolbasin, Attractors for Kirchhoff's equation with a nonlinear damping coefficient, Nonlinear Anal., 71 (2009), 2361-2371.doi: 10.1016/j.na.2009.01.187. |
[29] |
I. N. Kostin, Lower semicontinuity of a non-hyperbolic attractor, J. London Math. Soc., 52 (1995), 568-582.doi: 10.1112/jlms/52.3.568. |
[30] |
P. Marin-Rubio, A. M. Marquez-Duran and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Cont. Dyn. Syst., 31 (2011), 779-796.doi: 10.3934/dcds.2011.31.779. |
[31] |
T. Matsuyama and R. lkehata, On global solution and energy decay for the wave equation of Kirchhoff type with nonlinear damping term, J. Math. Anal. Appl., 204 (1996), 729-753.doi: 10.1006/jmaa.1996.0464. |
[32] |
M. Nakao, An attractor for a nonlinear dissipative wave equation of Kirchhoff type, J. Math. Anal. Appl., 353 (2009), 652-659.doi: 10.1016/j.jmaa.2008.09.010. |
[33] |
M. Nakao and Z. J. Yang, Global attractors for some qusi-linear wave equations with a strong dissipation, Adv. Math. Sci. Appl., 17 (2007), 89-105. |
[34] |
V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.doi: 10.1088/0951-7715/19/7/001. |
[35] |
J. C. Robinson, Stability of random attractors under perturbation and approximation, J. Differential Equations, 186 (2002), 652-669.doi: 10.1016/S0022-0396(02)00038-4. |
[36] |
Y. J. Wang, C. K. Zhong and S. F. Zhou, Pullback attractors of nonautonomous dynamical systems, Discrete Contin. Dyn. Syst., 16 (2006), 587-614.doi: 10.3934/dcds.2006.16.705. |
[37] |
Y. H. Wang, On the upper semicontinuity of pullback attractors with applications to plate equations, Commun. Pure Appl. Anal., 9 (2010), 1653-1673.doi: 10.3934/cpaa.2010.9.1653. |
[38] |
Y. H. Wang and Y. M. Qin, Upper semicontinuity of pullback attractors for nonclassical diffusion equations, J. Math. Phys., 51 (2010), 022701.doi: 10.1063/1.3277152. |
[39] |
Y. H. Wang, Pullback attractors for nonautonomous wave equations with critical exponent, Nonlinear Anal., TMA, 68 (2008), 365-376.doi: 10.1016/j.na.2006.11.002. |
[40] |
Z. J. Yang and Y. Q. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010), 3258-3278. |
[41] |
Z. J. Yang, Longtime behavior of the Kirchhoff type equation with strong damping in $\mathbbR^N$, J. Differential Equations, 242 (2007), 269-286.doi: 10.1016/j.jde.2007.08.004. |